下载和安装Anaconda
这是大佬整理的Python和Anaconda对应版本的参照表,不建议下载最新版的,因为好多库都不兼容,而且会在后续过程中会出现很多难以解决的问题https://blog.csdn.net/yuejisuo1948/article/details/81043823
- 安装注意问题
一个很关键的问题就是安装路径,这里建议新手和小白直接安装到C盘,这可以避免后续的很多小问题,但是尽管这样我也没有尝试过把它装入C盘
特别要注意的是,自己创建的路径,不要有空格和中文字符!!!
其中有一步是要选择系统环境变量,不要选!不要选!不要选!这里是自动添加环境变量,自己手动添加即可(当然,你如果能解决无法定位到动态链接库的问题,直接略过这里)
4. 配置Anaconda环境
在系统变量中添加
\Anaconda | Python需要 |
---|---|
\Anaconda\Scripts | conda自带脚本 |
\Anaconda\Library\mingw-w64\bin | 使用C with python的时候 |
\Anaconda\Library\bin | jupyter notebook动态库 |
\Anaconda\Library\usr\bin | 如果安装过程中勾选的all user |
检验是否安装成功
在cmd中输入python,检查是否有Python环境
在cmd中输入conda --version,查看是否有conda环境(检验安装成功的标志)
增加Anaconda中国镜像
在Anaconda prompt中操作:
conda config --add channels mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels
当显示这些的时候,说明你的通道已经修改成功
安装TensorFlow-GPU
看了好多博主大佬们,都是要配置环境,下载各种包之类的,运气好的话也要几个小时才能搞定,不过我在偶然间发现可以直接使用Anaconda Navigator 进行安装
-
创建环境
如果曾经创建过项目,直接调到步骤3
如果没有的话在首页选择environments后再点create
-
定义环境名,选择对应python版本
这里python版本不建议使用太高版本,name不要出现中文汉字等且不能与location中目录名相同,包括大小写 -
安装TensorFlow
GPU版的话只选择这个就可以,如果不使用GPU就选择上面不带-gpu的第三方库
版本的话建议安装1.14以下,2.0以上的话在后期写代码的过程中会出现各种各样的问题,而且搜尽了csdn也有一部分问题处理不了 -
pycharm中环境配置
file->settings->project->project interpreter
选择add local python interpreter
添加刚才创建的环境 -
验证
低于TensorFlow2.0的使用
import tensorflow as tf
hello = tf.constant('hello,tf')
sess = tf.Session()
print(sess.run(hello))
高于2.0的使用
import os
import tensorflow as tf
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
# 选择编号为0或1或2的GPU,根据你自己电脑的情况来填
os.environ["CUDA_VISIBLE_DEVICES"] = "0"