Anaconda+TensorFlow安装血泪史

本文详细介绍了如何在中国环境下下载安装Anaconda,包括选择镜像源、安装路径注意事项及避免环境变量问题。此外,还提供了Python和Anaconda版本匹配建议,以及Anaconda环境的配置方法。在Anaconda环境中创建并配置TensorFlow-GPU环境,推荐安装1.14以下版本以避免兼容性问题。最后,指导了如何在PyCharm中设置新环境,并提供了验证安装成功的代码片段。
摘要由CSDN通过智能技术生成

下载和安装Anaconda

  1. 官网(不推荐)
    因为国内限制问题,下载会相当的慢,而且会报各种错
    官网下载地址
  2. 镜像下载
    建议直接从镜像网站下载对应版本即可
    清华镜像

这是大佬整理的Python和Anaconda对应版本的参照表,不建议下载最新版的,因为好多库都不兼容,而且会在后续过程中会出现很多难以解决的问题https://blog.csdn.net/yuejisuo1948/article/details/81043823

  1. 安装注意问题
    一个很关键的问题就是安装路径,这里建议新手和小白直接安装到C盘,这可以避免后续的很多小问题,但是尽管这样我也没有尝试过把它装入C盘
    特别要注意的是,自己创建的路径,不要有空格和中文字符!!!

其中有一步是要选择系统环境变量,不要选!不要选!不要选!这里是自动添加环境变量,自己手动添加即可(当然,你如果能解决无法定位到动态链接库的问题,直接略过这里)在这里插入图片描述
4. 配置Anaconda环境
在系统变量中添加

\AnacondaPython需要
\Anaconda\Scriptsconda自带脚本
\Anaconda\Library\mingw-w64\bin使用C with python的时候
\Anaconda\Library\binjupyter notebook动态库
\Anaconda\Library\usr\bin如果安装过程中勾选的all user

检验是否安装成功

在cmd中输入python,检查是否有Python环境
在cmd中输入conda --version,查看是否有conda环境(检验安装成功的标志)

增加Anaconda中国镜像

在Anaconda prompt中操作:

conda config --add channels mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ 
conda config --add channels

当显示这些的时候,说明你的通道已经修改成功

安装TensorFlow-GPU

看了好多博主大佬们,都是要配置环境,下载各种包之类的,运气好的话也要几个小时才能搞定,不过我在偶然间发现可以直接使用Anaconda Navigator 进行安装

  1. 创建环境
    如果曾经创建过项目,直接调到步骤3
    如果没有的话在首页选择environments后再点create
    在这里插入图片描述

  2. 定义环境名,选择对应python版本
    在这里插入图片描述
    这里python版本不建议使用太高版本,name不要出现中文汉字等且不能与location中目录名相同,包括大小写

  3. 安装TensorFlow
    在这里插入图片描述
    GPU版的话只选择这个就可以,如果不使用GPU就选择上面不带-gpu的第三方库
    版本的话建议安装1.14以下,2.0以上的话在后期写代码的过程中会出现各种各样的问题,而且搜尽了csdn也有一部分问题处理不了

  4. pycharm中环境配置
    file->settings->project->project interpreter
    选择add local python interpreter
    添加刚才创建的环境在这里插入图片描述

  5. 验证
    低于TensorFlow2.0的使用

import tensorflow as tf
hello = tf.constant('hello,tf')
sess = tf.Session()
print(sess.run(hello))

高于2.0的使用

import os
import tensorflow as tf
config = tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(allow_growth=True))
sess = tf.compat.v1.Session(config=config)
# 选择编号为0或1或2的GPU,根据你自己电脑的情况来填
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

### 回答1: 这是关于AnacondaTensorFlow和PyCharm的问题。这三个工具都是用于开发Python程序的。Anaconda是一个Python发行版,它包含了许多常用的Python库和工具,使得Python环境设置更加简单方便。TensorFlow是一个用于人工智能和机器学习的开源库,可用于构建和训练神经网络。而PyCharm则是一个Python集成开发环境,它可以帮助开发人员更高效地编写代码和调试程序。总的来说,这三个工具结合起来可以提高Python开发效率和代码质量。 ### 回答2: anacondatensorflow和pycharm都是非常常用的机器学习和数据科学工具。 首先,anaconda是一个数据科学和机器学习开发环境,它包括很多最常用的Python软件包和库以及一个方便的包管理器。用户可以使用anaconda来创建虚拟环境,这意味着用户可以在同一机器上保留不同的Python环境,以实现对不同项目的管理。 其次,tensorflow是一个非常流行的基于Python的机器学习框架,它支持各种各样的机器学习任务,包括监督学习、无监督学习、强化学习等等。tensorflow允许用户构建一个计算图形(一个包含了各种计算、操作和变量的图形),并且通过训练这个图形来生成机器学习模型。tensorflow提供了多种编程语言接口,其中Python接口是最受欢迎的。 最后,Pycharm是一种用于Python开发的强大集成开发环境,它提供了许多功能,例如调试器、自动化测试、版本控制、自动完成和语法高亮等等。Pycharm 在开发过程中带来了很多便利,可以大大提高 Python 开发人员的效率和准确率。 总之,anacondatensorflow和pycharm都是目前机器学习和数据科学领域中非常重要的工具,使用它们可以帮助用户进行更高效的数据分析、机器学习和模型训练。 ### 回答3: anaconda是一个Python的科学计算环境,包含了众多科学计算包和工具,如numpy、scipy、matplotlib等,可以轻松进行数据分析、机器学习等任务。 tensorflow是一个由Google开发的机器学习框架,可以用于构建各种神经网络模型,支持多种硬件平台,如CPU、GPU等。其主要特点是高度灵活且可扩展性强,可满足各种不同领域的应用需求。 pycharm是一款Python IDE,拥有很多与Python开发相关的功能,如语法检查、代码智能提示、调试等。它也支持Anaconda环境,可以轻松地在pycharm中使用anaconda的科学计算、机器学习库。 当使用这三个工具时,可以使用Anaconda来管理Python环境,并安装必要的包和工具。然后使用pycharm编写机器学习代码,如定义网络结构、训练模型等,并调用Tensorflow来实现相应功能。由于Anaconda和pycharm的支持,开发者可以方便地在工作中使用Tensorflow构建机器学习模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值