高等数学公式

数学符号
在这里插入图片描述

一.高中

  1. 整式的乘法运算
    a m ⋅ a n = a m + n a^m \cdot a^n = a^{m+n} aman=am+n
    a m ÷ a n = a m − n a^m \div a^n = a^{m-n} am÷an=amn
    ( a m ) n = a m ⋅ n (a ^m)^n =a^{m \cdot n} (am)n=amn
    ( a b ) n = a n b n (ab)^n =a^nb^n (ab)n=anbn

  2. 常用的乘法公式
    平方差公式: ( a + b ) ( a − b ) = a 2 − b 2 (a+b)(a-b)=a^2-b^2 (a+b)(ab)=a2b2
    完全平方公式: ( a ± b ) 2 = a 2 ± 2 a b + b 2 (a \pm b)^2=a^2 \pm 2ab+b^2 (a±b)2=a2±2ab+b2

  3. 一元二次方程
    方程的形式: a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a \ne 0) ax2+bx+c=0(a=0)
    求根公式: − b ± b 2 − 4 a c 2 a \cfrac{-b \pm \sqrt {b^2-4ac}}{2a} 2ab±b24ac
    x 1 + x 2 = − b a , x 1 x 2 = c a x_1+x_2=-\cfrac{b}{a} , x_1x_2=\cfrac{c}{a} x1+x2=ab,x1x2=ac

  4. 指数函数
    (1)正分数指数幂: a m n = a m n a^{\frac{m}{n}}= \sqrt[n]{a^m} anm=nam ,( a ≥ 0 , m a \ge 0,m a0,m n ∈ N n \in N nN n > 1 , m n > 1,m n>1,m n n n互质)
    (2)幂的运算法则
    a m ⋅ a n = a m + n a^m \cdot a^n = a^{m+n} aman=am+n
    a m ÷ a n = a m − n a^m \div a^n = a^{m-n} am÷an=amn
    ( a m ) n = a m ⋅ n (a^m)^n = a^{m \cdot n} (am)n=amn
    ( a b ) n = a n b n (ab)^n = a^{n}b^{n} (ab)n=anbn
    ( a b ) n = a n b n = a n ⋅ b − n (\cfrac{a}{b})^n = \cfrac{a^n}{b^n} =a^n \cdot b^{-n} (ba)n=bnan=anbn

  5. 对数函数
    (2)性质:
    log ⁡ a a = 1 \log_a{a}=1 logaa=1
    log ⁡ a 1 = 0 \log_a{1}=0 loga1=0
     0和负数无对数
    a log ⁡ a N = N a^{\log_a{N}}=N alogaN=N
    (3)运算法则:
    log ⁡ a ( M ⋅ N ) = log ⁡ a M + log ⁡ a N \log_a(M \cdot N) = \log_a{M} + \log_a{N} loga(MN)=logaM+logaN
    log ⁡ a ( M N ) = log ⁡ a M − log ⁡ a N \log_a(\cfrac{M}{N}) = \log_a{M} - \log_a{N} loga(NM)=logaMlogaN
    log ⁡ a m b n = n m ⋅ log ⁡ a b \log_{a^m}b^n = \cfrac{n}{m}\cdot \log_a{b} logambn=mnlogab
    (4)换底公式: log ⁡ a N = log ⁡ b N log ⁡ b a \log_aN = \cfrac{\log_bN}{\log_ba} logaN=logbalogbN

  6. 三角函数
    (1)同角三角函数的基本关系式
     平方关系: sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin^2x + \cos^2 x =1 sin2x+cos2x=1
    (2)两角和与差的三角函数
    sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta sin(α±β)=sinαcosβ±cosαsinβ
    cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta cos(α±β)=cosαcosβsinαsinβ
    tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \tan(\alpha \pm \beta) = \cfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta} tan(α±β)=1tanαtanβtanα±tanβ
    (3)三角函数的倍角公式
    sin ⁡ ( 2 α ) = 2 sin ⁡ α cos ⁡ α \sin(2\alpha) = 2\sin\alpha \cos\alpha sin(2α)=2sinαcosα
    cos ⁡ ( 2 α ) = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α \cos(2\alpha) = \cos^2\alpha - \sin^2\alpha =2\cos^2\alpha-1 = 1-2\sin^2\alpha cos(2α)=cos2αsin2α=2cos2α1=12sin2α
    tan ⁡ ( 2 α ) = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan(2\alpha) = \cfrac{2\tan\alpha}{1 - \tan^2\alpha} tan(2α)=1tan2α2tanα
    (4) 特殊的三角函数值

    0 ° 0 \degree 30 ° 30 \degree 30° 45 ° 45 \degree 45° 60 ° 60 \degree 60° 90 ° 90 \degree 90° 180 ° 180 \degree 180° 270 ° 270 \degree 270° 360 ° 360 \degree 360°
    弧度0 π 6 \cfrac{\pi}{6} 6π π 4 \cfrac{\pi}{4} 4π π 3 \cfrac{\pi}{3} 3π π 2 \cfrac{\pi}{2} 2π π \pi π 3 π 2 \cfrac{3\pi}{2} 23π 2 π 2\pi 2π
    sin ⁡ α \sin \alpha sinα0 1 2 \cfrac{1}{2} 21 2 2 \cfrac{\sqrt2}{2} 22 3 2 \cfrac{\sqrt3}{2} 23 10-10
    cos ⁡ α \cos \alpha cosα1 3 2 \cfrac{\sqrt3}{2} 23 2 2 \cfrac{\sqrt2}{2} 22 1 2 \cfrac{1}{2} 210-101
    tan ⁡ α \tan \alpha tanα0 3 3 \cfrac{\sqrt3}{3} 33 1 1 1 3 \sqrt3 3 -0-0
  7. 等差数列
    (1)通项公式: a n = a 1 + ( n − 1 ) d a_n = a_1+(n-1)d an=a1+(n1)d
    (2)等差数列前n项和: S n = n ( a 1 + a n ) 2 S_n = \cfrac{n(a_1+a_n)}{2} Sn=2n(a1+an) 或者 S n = n a 1 + n ( n − 1 ) d 2 S_n = na_1+\cfrac{n(n-1)d}{2} Sn=na1+2n(n1)d

  8. 等比数列
    (1)通项公式: a n = a 1 q n − 1 a_n = a_1q^{n-1} an=a1qn1,中项: b 2 = a c b^2 = ac b2=ac
    (2)等比数列的前n项和: S n = { n a 1 , q = 1 a 1 ( 1 − q n ) 1 − q 或者 a 1 − a n q 1 − q , q ≠ 1 S_n = \begin{cases}na_1, q=1 \\ \cfrac{a_1(1-q^n)}{1-q} 或者 \cfrac{a_1-a_nq}{1-q},q \ne 1\end{cases} Sn= na1,q=11qa1(1qn)或者1qa1anq,q=1

  9. 向量的坐标运算
    向量的长度及两点间的距离公式
     设 A = ( x 1 , y 1 ) , B = ( x 2 , y 2 ) A =(x_1,y_1),B =(x_2,y_2) A=(x1,y1),B=(x2,y2)
     长度: ∣ A ∣ = x 1 2 + x 2 2 |A| = \sqrt{x_1{^2}+x_2{^2}} A=x12+x22
     距离: d A B = ∣ A B → ∣ = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 d_{AB}= |\overrightarrow {AB}| = \sqrt{(x_2 - x_1){^2}+(y_2 - y_1){^2}} dAB=AB =(x2x1)2+(y2y1)2

  10. 向量的数量积
    (1)向量a,b的数量积: a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ ⟨ a , b ⟩ a \cdot b = |a||b| \cos \lang a,b \rangle ab=a∣∣bcosa,b
    (2)向量数量积的运算:
     在坐标平面 O x y Oxy Oxy中,已知 a = ( x 1 , y 1 ) , b = ( x 2 , y 2 ) a = (x_1,y_1),b = (x_2,y_2) a=(x1,y1),b=(x2,y2)
     性质:
       a ⊥ b    ⟺    x 1 x 2 + y 1 y 2 = 0 a \bot b \iff x_1x_2+y_1y_2 = 0 abx1x2+y1y2=0
       a ∥ b    ⟺    x 1 x 2 = y 1 y 2 a \parallel b \iff \cfrac{x_1}{x_2} =\cfrac{y_1}{y_2} abx2x1=y2y1

  11. 直线
    (1)斜率:直线倾斜角 α ( α ≠ 90 ° ) \alpha(\alpha \ne 90 \degree) α(α=90°)的正切值,用 k k k表示,即 k = tan ⁡ α k=\tan \alpha k=tanα
     一般形式:给定 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) P_1(x_1,y_1),P_2(x_2,y_2) P1(x1,y1),P2(x2,y2)是直线上任意两点,斜率 k = y 2 − y 1 x 2 − x 1 ( x 2 ≠ x 1 ) k=\cfrac{y_2-y_1}{x_2-x_1}(x_2 \ne x_1) k=x2x1y2y1(x2=x1)
    (2)直线方程的形式

    名称已知条件方程形式说明
    斜截式斜率 k k k和直线在 y y y轴上的截距 b b b y = k x + b y=kx+b y=kx+b不包括y轴和平行 y y y轴的直线
    点斜式直线过点 P 1 ( x 1 , y 1 ) P_1(x_1,y_1) P1(x1,y1)和斜率 k k k y − y 1 = k ( x − x 1 ) y-y_1=k(x-x_1) yy1=k(xx1)不包括y轴和平行 y y y轴的直线
    两点式直线过点 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) P_1(x_1,y_1),P_2(x_2,y_2) P1(x1,y1),P2(x2,y2) ( x 1 ≠ x 2 , y 1 ≠ y 2 ) (x_1 \ne x_2,y_1\ne y_2) (x1=x2,y1=y2) y − y 1 y 2 − y 1 = x − x 1 x 2 − x 1 \cfrac{y-y1}{y_2-y_1}=\cfrac{x-x_1}{x_2-x_1} y2y1yy1=x2x1xx1不包括坐标轴和平行坐标轴的直线
    截距式直线在 x x x轴上的截距是 a ( a ≠ 0 ) a(a \ne 0) a(a=0)
    直线在 y y y轴上的截距是 b ( b ≠ 0 ) b(b \ne 0) b(b=0)
    x a + y b = 1 \cfrac{x}{a}+\cfrac{y}{b}=1 ax+by=1不包括经过原点的直线和平行坐标轴的直线
    一般式 A , B A,B A,B不同时为零 A x + B y + C = 0 ( k = − A B ) Ax+By+C=0(k=-\cfrac{A}{B}) Ax+By+C=0(k=BA任何直线都可写成此形式

  (3)两直线的位置关系
    设两直线的斜率都存在,其方程分别为: { l 1 : y = k 1 x + b 1 l 2 : y = k 2 x + b 2 \begin{cases} l_1: y=k_1x+b1 \\ l_2: y=k_2x+b2 \end{cases} {l1:y=k1x+b1l2:y=k2x+b2
    两直线平行: k 1 = k 2 k_1=k_2 k1=k2
    两直线垂直: k 1 k 2 = − 1 k_1k_2=-1 k1k2=1
  (4)点到直线的距离:设点 P 1 ( x 0 , y 0 ) P_1(x_0,y_0) P1(x0,y0)到直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0,则有 d = ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 d = \cfrac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} d=A2+B2 Ax0+By0+C
  (5)两平行线的距离:设两直线的方程 { l 1 : A x + B y + C 1 = 0 l 2 : A x + B y + C 2 = 0 \begin{cases} l_1: Ax+By+C_1= 0 \\ l_2: Ax+By+C_2= 0 \end{cases} {l1:Ax+By+C1=0l2:Ax+By+C2=0,则 d l 1 , l 2 = ∣ C 1 − C 2 ∣ A 2 + B 2 d_{l_1,l_2} = \cfrac{|C_1 - C_2|}{\sqrt{A^2+B^2}} dl1,l2=A2+B2 C1C2


  1. (1)圆的标准方程:设圆心为 ( a , b ) (a,b) (a,b),半径为 r r r,则方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (xa)2+(yb)2=r2
    (2)圆的参数方程:圆心在原点的圆方程 x 2 + y 2 = 0 x^2+y^2=0 x2+y2=0,参数方程可以表示为: { x = r cos ⁡ θ y = r sin ⁡ θ \begin{cases} x=r\cos\theta\\y=r\sin\theta \end{cases} {x=rcosθy=rsinθ
    (3)点与圆的位置关系:点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)与圆 ( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (xa)2+(yb)2=r2的位置关系,即点 p p p到圆心的距离: d = ( x 0 − a ) 2 + ( y 0 − b ) 2 d=\sqrt{(x_0-a)^2+(y_0-b)^2} d=(x0a)2+(y0b)2
    (4)直线与圆的位置关系:直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0与圆 ( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 (xa)2+(yb)2=r2的位置关系,即圆心的到直线的距离: d = ∣ A a + B b + C ∣ A 2 + B 2 d=\cfrac{|Aa+Bb+C|}{\sqrt{A^2+B^2}} d=A2+B2 Aa+Bb+C

  2. 空间向量
    (1)向量的长度及两点间的距离公式
     设 a ( a 1 , a 2 , a 3 ) a(a_1,a_2,a_3) a(a1,a2,a3),则有 ∣ a ∣ = a 1 2 + a 2 2 + a 3 2 |\bm a| = \sqrt{a_1{^2}+a_2{^2}+a_3{^2}} a=a12+a22+a32
     设 A ( x 1 , y 1 , z 1 ) , B ( x 2 , y 2 , z 2 ) A(x_1,y_1,z_1),B(x_2,y_2,z_2) A(x1,y1,z1),B(x2,y2,z2),则有 d A B = A B → = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( z 2 − z 1 ) 2 d_{AB} = \overrightarrow{AB} = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} dAB=AB =(x2x1)2+(y2y1)2+(z2z1)2
    (2)向量数量积的运算:
     已知 a = ( a 1 , a 2 , a 3 ) , b = ( b 1 , b 2 , b 3 ) a = (a_1,a_2,a_3),b=(b_1,b_2,b_3) a=(a1,a2,a3),b=(b1,b2,b3)
     性质:
    a ⊥ b    ⟺    a 1 b 1 + a 2 b 2 + a 3 b 3 = 0 a \bot b \iff a_1b_1+a_2b_2+a_3b_3 = 0 aba1b1+a2b2+a3b3=0
    a ∥ b    ⟺    a 1 b 1 = a 2 b 2 = a 3 b 3 a \parallel b \iff \cfrac{a_1}{b_1} =\cfrac{a_2}{b_2}=\cfrac{a_3}{b_3} abb1a1=b2a2=b3a3
    (3)点到平面的距离:点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0),平面方程 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0,则 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = \cfrac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

  3. 其他
    圆锥,三角体的体积公式: V = 1 3 S h V=\cfrac{1}{3}Sh V=31Sh(S是底面积,h是高)
    弧长公式: l = r θ l=r\theta l=rθ(r是半径, θ \theta θ是圆心角)
    椭圆面积公式: S = π a b S=πab S=πab
    球体的体积公式: V = 4 π r 3 3 V=\cfrac{4\pi r^3}{3} V=34πr3
    球的表面积公式为: S = 4 π r 2 S = 4πr² S=4πr2

二.高数基础

  1. 两个重要极限(引申)
       lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_{x\to 0}\cfrac{\sin x}{x}=1 x0limxsinx=1
       lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim\limits_{n\to \infty}(1+\cfrac{1}{n})^n=e nlim(1+n1)n=e

  2. 无穷小量的比较 (趋近于0的速度)( 高阶,同阶,等价)
    x → 0 x\to 0 x0时,
    1 − cos ⁡ x    ⟺    x 2 2 1-\cos x \iff\cfrac{x^2}{2} 1cosx2x2
    sin ⁡ x    ⟺    x \sin x \iff x sinxx

  3. 矩阵(三阶行列式)
    α = { a 1 , a 2 , a 3 } , β = { b 1 , b 2 , b 3 } \alpha=\{a_1,a_2,a_3\}, \beta=\{b_1,b_2,b_3\} α={a1,a2,a3},β={b1,b2,b3}
    α × β = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ∣ a 2 a 3 b 2 b 3 ∣ i − ∣ a 1 a 3 b 1 b 3 ∣ j + ∣ a 1 a 2 b 1 b 2 ∣ k \alpha \times \beta =\begin{vmatrix}i & j & k \\a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \end{vmatrix}= \begin{vmatrix}a_2 & a_3 \\b_2 & b_3\end{vmatrix} i - \begin{vmatrix}a_1 & a_3 \\b_1 & b_3\end{vmatrix}j+ \begin{vmatrix}a_1 & a_2 \\b_1 & b_2\end{vmatrix}k α×β= ia1b1ja2b2ka3b3 = a2b2a3b3 i a1b1a3b3 j+ a1b1a2b2 k= ( a 2 b 3 − a 3 b 2 ) i − ( a 1 b 3 − a 3 b 1 ) j + ( a 1 b 2 − a 2 b 1 ) k (a_2b_3-a_3b_2)i-(a_1b_3-a_3b_1)j+(a_1b_2-a_2b_1)k (a2b3a3b2)i(a1b3a3b1)j+(a1b2a2b1)k= { a 2 b 3 − a 3 b 2 , − ( a 1 b 3 − a 3 b 1 ) , a 1 b 2 − a 2 b 1 } \{a_2b_3-a_3b_2,-(a_1b_3-a_3b_1),a_1b_2-a_2b_1\} {a2b3a3b2,(a1b3a3b1),a1b2a2b1}

  4. 基本初等函数的求导公式:

    指数函数: ( e x ) ′ = e x (e^x)' = e^x (ex)=ex ( a x ) ′ = a x ln ⁡ a (a^x)' = a^x\ln a (ax)=axlna

    对数函数: ( ln ⁡ x ) ′ = 1 x (\ln x)' = \cfrac{1}{x} (lnx)=x1 ( l o g a x ) ′ = 1 x ln ⁡ a (log_ax)' =\cfrac{1}{x\ln a} (logax)=xlna1

    正余切函数: ( tan ⁡ x ) ′ = 1 cos ⁡ 2 x = sec ⁡ 2 x (\tan x)' = \cfrac{1}{\cos^2 x} = \sec^2x (tanx)=cos2x1=sec2x ( cot ⁡ x ) ′ = − 1 sin ⁡ 2 x = − csc ⁡ 2 x (\cot x)' = -\cfrac{1}{\sin^2 x} = -\csc^2x (cotx)=sin2x1=csc2x

    反正余弦函数: ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)' = \cfrac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1 ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)' = - \cfrac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1

    反正余切函数: ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)' = \cfrac{1}{1+x^2} (arctanx)=1+x21 ( a r c c o t x ) ′ = − 1 1 + x 2 (arccot x)' = - \cfrac{1}{1+x^2} (arccotx)=1+x21

三.高数

第一章 空间解析几何与向量代数

2.向量代数

2.1 向量的方向余弦

α ⃗ = { a 1 , a 2 , a 3 } \vec \alpha = \{a_1,a_2,a_3\} α ={a1,a2,a3}

(1) cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = 1 \cos^2 \alpha+\cos^2 \beta+\cos^2 \gamma=1 cos2α+cos2β+cos2γ=1 α , β , γ 为向量 α ⃗ 的方向角 \alpha,\beta,\gamma为向量\vec \alpha的方向角 α,β,γ为向量α 的方向角

(2) α 0 = α ∣ α ∣ = { a 1 a 1 2 + a 2 2 + a 3 2 , a 2 a 1 2 + a 2 2 + a 3 2 , a 3 a 1 2 + a 2 2 + a 3 2 } \alpha^0 = \cfrac{\alpha}{|\alpha|} = {\{\cfrac{a_1}{\sqrt{a_1{^2}+a_2{^2}+a_3{^2}}},\cfrac{a_2}{\sqrt{a_1{^2}+a_2{^2}+a_3{^2}}},\cfrac{a_3}{\sqrt{a_1{^2}+a_2{^2}+a_3{^2}}}}\} α0=αα={a12+a22+a32 a1,a12+a22+a32 a2,a12+a22+a32 a3}

6.二次曲面

椭球面: x 2 a 2 + x 2 b 2 + x 2 c 2 = 1 \cfrac{x^2}{a^2}+ \cfrac{x^2}{b^2}+\cfrac{x^2}{c^2}=1 a2x2+b2x2+c2x2=1

椭球抛物面: z = x 2 a 2 + x 2 b 2 z=\cfrac{x^2}{a^2}+ \cfrac{x^2}{b^2} z=a2x2+b2x2

椭圆锥面: z 2 = x 2 a 2 + x 2 b 2 z^2=\cfrac{x^2}{a^2}+ \cfrac{x^2}{b^2} z2=a2x2+b2x2

单页双曲面: x 2 a 2 + x 2 b 2 − x 2 c 2 = 1 \cfrac{x^2}{a^2}+ \cfrac{x^2}{b^2}-\cfrac{x^2}{c^2}=1 a2x2+b2x2c2x2=1

双叶双曲面: x 2 a 2 + x 2 b 2 − x 2 c 2 = − 1 \cfrac{x^2}{a^2}+ \cfrac{x^2}{b^2}-\cfrac{x^2}{c^2}=-1 a2x2+b2x2c2x2=1

第二章 多元函数的微分学

第三章 重积分

一、二重积分

直角坐标下二重积分的计算
在这里插入图片描述
极坐标下二重积分的计算
在这里插入图片描述

二、 三重积分

直角坐标下三重积分的计算

在这里插入图片描述

柱面坐标下三重积分的计算

在这里插入图片描述

在这里插入图片描述

球面坐标下三重积分的计算

在这里插入图片描述
在这里插入图片描述

曲面面积

在这里插入图片描述

第四章 曲线积分与曲面积分

1、对弧长的曲线积分

在这里插入图片描述
在这里插入图片描述

2、对坐标的曲线积分

在这里插入图片描述

3、格林公式

在这里插入图片描述

4、对面积的曲线积分

在这里插入图片描述

5、对坐标的曲线积分

高斯公式
在这里插入图片描述

在这里插入图片描述
散度

在这里插入图片描述

第六章 无穷级数

一、数项级数的审敛法

1、常数项级数
  1. 性质2: ∑ n = 1 ∞ u n \displaystyle\sum_{n=1}^\infty u_n n=1un ∑ n = 1 ∞ v n \displaystyle\sum_{n=1}^\infty v_n n=1vn分别收敛与 S S S σ \sigma σ ∑ n = 1 ∞ u n ± v n \displaystyle\sum_{n=1}^\infty u_n\pm v_n n=1un±vn也收敛于 S ± σ S\pm\sigma S±σ
    (1)两个收敛的级数相加(减)后仍收敛
    (2)相加(减)后收敛的两个级数未必收敛
    收敛+收敛=收敛
    收敛+发散=发散
    发散+发散=发散或收敛

  2. 性质4: ∑ u n \displaystyle\sum u_n un收敛,任意加括号的级数也收敛且和不变
    (1)加括号后收敛,级数未必收敛
    (2)加括号后发散,级数必发散

  3. 性质5: ∑ u n \displaystyle\sum u_n un收敛,则 lim ⁡ n → ∞ u n = 0 \displaystyle\lim_{n \rightarrow \infty}u_n = 0 nlimun=0
    (1) u n → 0 u_n\rightarrow0 un0 级数未必收敛
    (2) u n 不趋近 0 u_n 不趋近0 un不趋近0 级数必发散

  4. 几何(等比)级数: ∑ n = 1 ∞ a q n − 1 \displaystyle\sum_{n=1}^\infty aq^{n-1} n=1aqn1 ∣ q ∣ < 1 |q|<1 q<1收敛 S n = a 1 − q S_n = \cfrac{a}{1-q} Sn=1qa

  5. 调和级数: ∑ n = 1 ∞ 1 n \displaystyle\sum_{n=1}^\infty \cfrac{1}{n} n=1n1 发散

2、正项级数

(注意:以下只符合正项级数)

  1. ∑ u n \displaystyle\sum u_n un ∑ v n \displaystyle\sum v_n vn是正项级数,且 u n < v n u_n<v_n un<vn
    ∑ v n \displaystyle\sum v_n vn收敛,则 ∑ u n \displaystyle\sum u_n un收敛;
    ∑ u n \displaystyle\sum u_n un发散,则 ∑ v n \displaystyle\sum v_n vn发散

  2. p级数: ∑ n = 1 ∞ 1 n p \displaystyle\sum_{n=1}^\infty \cfrac{1}{n^p} n=1np1 p > 1 p>1 p>1 收敛

  3. 比较审敛法:
    lim ⁡ n → ∞ u n v n = l \displaystyle\lim_{n\rightarrow \infty} \cfrac{u_n}{v_n} =l nlimvnun=l,当 0 < l < + ∞ 0 < l< +\infty 0<l<+时 , u n , v n u_n,v_n un,vn同敛散

  4. 比值审敛法:
    lim ⁡ n → ∞ u n + 1 u n = ρ \displaystyle\lim_{n\rightarrow \infty} \cfrac{u_{n+1}}{u_n} = \rho nlimunun+1=ρ
    ρ < 1 \rho < 1 ρ<1收敛, ρ > 1 \rho > 1 ρ>1发散, ρ = 1 \rho = 1 ρ=1 无法比较

  5. 根植审敛法(柯西判别法):
    lim ⁡ n → ∞ u n n = ρ \displaystyle\lim_{n\rightarrow \infty} \sqrt[n]{u_n} = \rho nlimnun =ρ
    ρ < 1 \rho < 1 ρ<1收敛, ρ > 1 \rho > 1 ρ>1发散, ρ = 1 \rho = 1 ρ=1 无法比较

3、交错级数

莱布尼兹审敛法:

∑ n = 1 + ∞ ( − 1 ) n − 1 u n = ρ \displaystyle\sum_{n =1}^ {+\infty} (-1)^{n-1}u_n = \rho n=1+(1)n1un=ρ ( u n ≥ 0 ) (u_n\ge 0) (un0)

(1) u n ≥ u n + 1 u_n \ge u_{n+1} unun+1

(2) lim ⁡ n → ∞ u n = 0 \displaystyle\lim_{n\rightarrow \infty}u_n = 0 nlimun=0 ,则级数收敛, S ≤ u 1 , ∣ r n ∣ ≤ u n + 1 S \le u_1,|r_n| \le u_{n+1} Su1,rnun+1

4、任意项级数
  1. ∑ n = 1 + ∞ u n = u 1 + u 2 + u 3 + … … \displaystyle\sum_{n =1}^ {+\infty} u_n=u_1+u_2+u_3+…… n=1+un=u1+u2+u3+……是任意项级数
    lim ⁡ n → ∞ u n + 1 u n = l \displaystyle\lim_{n\rightarrow \infty} \cfrac{u_{n+1}}{u_n} = l nlimunun+1=l (正项的比值审敛法)
    l < 1 l < 1 l<1时, ∑ u n \displaystyle\sum u_n un收敛,
    l > 1 l > 1 l>1时, ∑ u n \displaystyle\sum u_n un发散
    l = 1 l= 1 l=1 无法比较

二、幂级数

  1. 定理1 (阿贝尔定理)
    ∑ n = 0 + ∞ a n x n \displaystyle\sum_{n =0}^ {+\infty} a_nx^n n=0+anxn
    x = x 0 x=x_0 x=x0时收敛, ∣ x ∣ < x 0 |x|<x_0 x<x0,幂级数绝对收敛
    x = x 0 x=x_0 x=x0时发散, ∣ x ∣ > x 0 |x|>x_0 x>x0,幂级数发散
    推论:
    (1) x = 0 x=0 x=0 收敛
    (2) x ∈ ( − ∞ , + ∞ ) x \in (-\infty,+\infty) x(,+) 收敛
    (3) ∣ x ∣ < R |x| <R x<R 绝对收敛

  2. 定理2: lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ \displaystyle\lim_{n \rightarrow \infty} |\cfrac{a_{n+1}}{a_n}| = \rho nlimanan+1=ρ , R = 1 ρ = { R = + ∞ , ( ρ = 0 ) R = 0 , ( ρ = + ∞ ) R = 1 ρ , ( ρ ≠ 0 ) R = \cfrac{1}{\rho} =\begin{cases} R=+\infty,(\rho=0)\\R=0,(\rho=+\infty) \\R= \cfrac{1}{\rho},(\rho\ne0)\end{cases} R=ρ1= R=+,(ρ=0)R=0,(ρ=+)R=ρ1,(ρ=0)

  3. 性质1: ∑ n = 0 + ∞ a n x n \displaystyle\sum_{n =0}^ {+\infty} a_nx^n n=0+anxn 的和函数 S ( x ) S(x) S(x)在收敛域 I I I是连续的

    性质2: ∑ n = 0 + ∞ a n x n \displaystyle\sum_{n =0}^ {+\infty} a_nx^n n=0+anxn 的和函数 S ( x ) S(x) S(x)在收敛域 I I I可积
    ∫ 0 x S ( t ) d t = ∫ 0 x ( ∑ n = 0 ∞ a n t n ) d t = ∑ n = 0 + ∞ ∫ 0 x a n t n d t = ∑ n = 0 + ∞ a n n + 1 x n + 1 d t ( x ∈ I ) \int_0^x S(t)dt=\int_0^x(\displaystyle\sum_{n =0}^ {\infty} a_nt^n)dt = \displaystyle\sum_{n =0}^ {+\infty} \int_0^xa_nt^ndt =\displaystyle\sum_{n =0}^ {+\infty} \cfrac{a_n}{n+1}x^{n+1}dt (x \in I) 0xS(t)dt=0x(n=0antn)dt=n=0+0xantndt=n=0+n+1anxn+1dt(xI)
    逐项求积分后与原幂级数的收敛半径相同,重新考查端点处,得出新的幂级数的收敛域

    性质3: S ( x ) S(x) S(x) ( − R , R ) (-R,R) (R,R)可导
    S ( x ) ′ = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 0 ∞ n a n x n − 1 S(x)'=(\displaystyle\sum_{n =0}^ {\infty} a_{n}x^n)'=\displaystyle\sum_{n=0}^{\infty}(a_nx^n)'=\displaystyle\sum_{n=0}^{\infty}na_nx^{n-1} S(x)=(n=0anxn)=n=0(anxn)=n=0nanxn1

三、函数的幂级数展开式

在这里插入图片描述

在这里插入图片描述
e x = ∑ n = 0 ∞ x n n ! , ( − ∞ < x < + ∞ ) e^x = \displaystyle\sum_{n =0}^ {\infty} \cfrac{x^n}{n!},(-\infty<x<+\infty) ex=n=0n!xn,(<x<+)

sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! , ( − ∞ < x < + ∞ ) \sin x = \displaystyle\sum_{n =0}^ {\infty} \cfrac{(-1)^{n}x^{2n+1}}{(2n+1)!},(-\infty<x<+\infty) sinx=n=0(2n+1)!(1)nx2n+1,(<x<+)

1 1 − x = ∑ n = 0 ∞ x n , ( − 1 < x < 1 ) \cfrac{1}{1-x} = \displaystyle\sum_{n =0}^ {\infty} x^n,(-1<x<1) 1x1=n=0xn,(1<x<1)

四、傅里叶幂级数

欧拉-傅里叶级数: f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x) =\cfrac{a_0}{2}+\displaystyle\sum_{n =1}^ {\infty} (a_n\cos nx+b_n\sin nx) f(x)=2a0+n=1(ancosnx+bnsinnx)

欧拉-傅里叶公式:

a 0 = 1 π ∫ − π π f ( x ) d x a_0=\cfrac{1}{\pi} \int_{-\pi}^ {\pi}f(x)dx a0=π1ππf(x)dx

a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x a_n=\cfrac{1}{\pi} \int_{-\pi}^ {\pi} f(x) \cos nx dx an=π1ππf(x)cosnxdx ( n = 1 , 2 , … (n = 1,2,… (n=1,2,)

b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x b_n=\cfrac{1}{\pi} \int_{-\pi}^ {\pi} f(x) \sin nx dx bn=π1ππf(x)sinnxdx ( n = 1 , 2 , … (n = 1,2,… (n=1,2,)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值