高等数学公式(latex)


title: latex tutorial

date: 2020-08-16 23:25:43

tags:

  • latex

categories:

  • math

使用latex编写数据公式

第一章 一元函数的极限

1. 初等函数公式

1.1 和差角公式

s i n ( α ± β ) = s i n α c o s β ± c o s α s i n β c o s ( α ± β ) = c o s α c o s β ∓ s i n β s i n α sin(\alpha\pm\beta)=sin\alpha cos\beta \pm cos\alpha sin\beta \\ cos(\alpha \pm \beta) = cos\alpha cos\beta \mp sin\beta sin\alpha sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβsinβsinα

1.2 积化角公式

s i n α c o s β = 1 2 [ s i n ( α + β ) + s i n ( α − β ) ] c o s α s i n β = 1 2 [ s i n ( α + β ) − s i n ( α − β ) ] sin\alpha cos\beta = \frac{1}{2}[sin(\alpha+\beta)+sin(\alpha-\beta)] \\ cos\alpha sin\beta = \frac{1}{2}[sin(\alpha + \beta) - sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]

1.3 倍角公式

s i n 2 α = 2 s i n α c o s β c o s 2 α = 2 c o s 2 α − 1 sin2\alpha=2sin\alpha cos\beta \\ cos2\alpha= 2 cos^2\alpha-1 sin2α=2sinαcosβcos2α=2cos2α1

2.极限

  • 常用极限:
    ∣ q ∣ < 1 , lim ⁡ 1 → ∞ q n = 0 ; a > 1 , lim ⁡ n → ∞ a n = 1 ; lim ⁡ n → ∞ n n = 1 若 f ( x ) → 0 , g ( x ) → ∞ , 则 l i m [ 1 ± f ( x ) ] g ( x ) = e l i m l n ( 1 + f ( x ) ) 1 / g ( x ) ⟶ l n ( 1 + f ( x ) ) − f ( x ) e ± l i m [ f ( x ) g ( x ) ] |q|<1,\lim_{1 \to \infin} q^n=0;a>1,\lim_{n \to \infin} \sqrt[n]{a}=1;\lim_{n\to \infin } \sqrt[n]{n}=1 \\ 若f(x) \to 0 ,g(x) \to \infin,则lim[1\pm f(x)]^{g(x)} = e^{lim \frac{ln(1+f(x))}{1/g(x)}} \stackrel{ln(1+f(x))-f(x)}{\longrightarrow} e^{\pm lim[f(x)g(x)]} q<1,1limqn=0;a>1,nlimna =1;nlimnn =1f(x)0,g(x),lim[1±f(x)]g(x)=elim1/g(x)ln(1+f(x))ln(1+f(x))f(x)e±lim[f(x)g(x)]

第二章 导数与微分

2.1 基本导数公式

f ′ ( x 0 ) = lim ⁡ △ x → 0 △ y △ x = lim ⁡ △ x → 0 f ( x 0 + △ x ) − f ( x 0 ) △ x = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = t a n α f'(x_0)=\lim_{\triangle x \to 0} \frac{\triangle y}{\triangle x} = \lim_{\triangle x \to 0} \frac{f(x_0+\triangle x)-f(x_0)}{\triangle x} = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=tan\alpha f(x0)=x0limxy=x0limxf(x0+x)f(x0)=xx0limxx0f(x)f(x0)=tanα

2.2 高阶导数

  • 牛顿-莱布尼兹公式
    ( u v ) ( n ) = ∑ k = 0 n C u k u n − k v k = u ( n ) v + n u ( n − 1 ) v ′ + n ( n − 1 ) 2 ! u ( n − 2 ) v n + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! u ( n − k ) v ( k ) + ⋯ + u v ( n ) (uv)^{(n)}= \sum^{n}_{k=0}C^k_u u^{n-k}v{k} \\ = u^{(n)}v+nu^{(n-1)}v'+\frac{n(n-1)}{2!}u^{(n-2)}v^n+\cdots+\frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v{(k)}+\cdots+uv^{(n)} (uv)(n)=k=0nCukunkvk=u(n)v+nu(n1)v+2!n(n1)u(n2)vn++k!n(n1)(nk+1)u(nk)v(k)++uv(n)

第三章 微分中值定理与微分的应用

3.1 基本定理

  • 拉格朗日中值定理
    f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) , ξ ∈ ( a , b ) f(b)-f(a)=f'(\xi)(b-a),\xi \in (a,b) \\ f(b)f(a)=f(ξ)(ba),ξ(a,b)

  • 柯西中值定理:
    f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) , ξ ∈ ( a , b ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)},\xi \in (a,b) F(b)F(a)f(b)f(a)=F(ξ)f(ξ),ξ(a,b)

    当 F ( x ) = x 时,柯西中值定理就是拉格朗日中值定理 当F(x)=x时,柯西中值定理就是拉格朗日中值定理 F(x)=x时,柯西中值定理就是拉格朗日中值定理

3.2

  • 泰勒公式
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 n ! ( x − x 0 ) n + R n ( x ) ) \begin{aligned} & f(x) = f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+ { \frac{f^{(n)}(x_0}{n!}(x-x_0)^n+R_n(x)} )\end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0(xx0)n+Rn(x))

  • 余项
    R n ( x ) = { o ( ( x − x 0 ) n ) f ( n + 1 ) ξ ( n + 1 ) ! ( x − x 0 ) n + 1 = f ( n + 1 ) ( x 0 + θ ( x − x 0 ) ) ( n + 1 ) ! ( x − x 0 ) n + 1 ; ( ξ ∈ ( x 0 , x ) , θ i n ( 0 , 1 ) ) R_n(x) = \begin{cases} o((x-x_0)^n) & \\ \dfrac{f^{(n+1)}\xi}{(n+1)!}(x-x_0)^{n+1}=\dfrac{f^{(n+1)(x_0+\theta(x-x_0))}}{(n+1)!}(x-x_0)^{n+1}; (\xi \in (x_0,x),\theta in (0,1)) & \\ &\end{cases} Rn(x)= o((xx0)n)(n+1)!f(n+1)ξ(xx0)n+1=(n+1)!f(n+1)(x0+θ(xx0))(xx0)n+1;(ξ(x0,x),θin(0,1))

  • 麦克劳林公式
    f ( x ) = f ( 0 ) + f ′ ( 0 ) ( x ) + f ′ ′ ( 0 ) 2 ! ( x ) 2 + ⋯ + f ( n ) ( 0 ) n ! ( x ) n + f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 ; θ ∈ ( 0 , 1 ) ) f(x) = f(0)+f'(0)(x)+\frac{f''(0)}{2!}(x)^2+\cdots +\frac{f^{(n)}(0)}{n!}(x)^n+\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1};\theta \in (0,1)) f(x)=f(0)+f(0)(x)+2!f′′(0)(x)2++n!f(n)(0)(x)n+(n+1)!f(n+1)(θx)xn+1;θ(0,1))
    🔶常用初等函数的展式:
    e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + R n ( x ) ; R n ( x ) = e θ x ( n + 1 ) ! x n + 1 ; θ ∈ ( 0 , 1 ) ) s i n x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) m − 1 x 2 m − 1 ( 2 m − 1 ) ! + R 2 m ( x ) ; R 2 m ( x ) = s i n [ θ x + ( 2 m + 1 ) π 2 ] ( 2 m + 1 ) ! x 2 m + 1 ; ( θ ∈ ( 0 , 1 ) ) c o s x = 1 − x 2 2 ! + x 4 4 ! − ⋯ + ( − 1 ) m x 2 m ( 2 m ! ) + R 2 m + 1 ( x ) ; R 2 m + 1 ( x ) = c o s [ θ x + ( m + 1 ) π ] ( 2 m + 2 ) ! x 2 m + 2 ; ( θ ∈ ( 0 , 1 ) ) e^x = 1+x+\frac{x^2}{2!}+\cdots + \frac{x^n}{n!}+R_n(x); \\ R_n(x)= \frac{e^{\theta x}}{(n+1)!}x^{n+1}; \theta \in (0,1)) \\ sinx = x - \frac{x^3}{3!}+\frac{x^5}{5!}+\cdots+(-1)^{m-1}\frac{x^{2m-1}}{(2m-1)!}+R_{2m}(x); \\ R_{2m}(x)= \frac{sin[\theta x +(2m+1)\frac{\pi}{2}]}{(2m+1)!}x^{2m+1};(\theta \in (0,1) ) \\ cosx= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots + (-1)^m\frac{x^{2m}}{(2m!)}+R_{2m+1}(x); \\ R_{2m+1}(x) = \frac{cos[\theta x + (m+1)\pi]}{(2m+2)!}x^{2m+2};(\theta \in (0,1)) ex=1+x+2!x2++n!xn+Rn(x);Rn(x)=(n+1)!eθxxn+1;θ(0,1))sinx=x3!x3+5!x5++(1)m1(2m1)!x2m1+R2m(x);R2m(x)=(2m+1)!sin[θx+(2m+1)2π]x2m+1;(θ(0,1))cosx=12!x2+4!x4+(1)m(2m!)x2m+R2m+1(x);R2m+1(x)=(2m+2)!cos[θx+(m+1)π]x2m+2;(θ(0,1))

3.3

弧微分公式: d s = 1 + y ′ 2 d x = x ′ ( t ) + y ′ ( t ) 2 d t = ρ 2 + ρ ′ 2 d θ 平均曲率: K ‾ = ∣ Δ α Δ s = ∣ d α d s ∣ = ∣ y n ∣ ( 1 + y ′ 2 ) 3 = ∣ φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ∣ [ φ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 2 直线的曲率: K = 0 ; 半径为 R 的圆的曲率: K = 1 R 曲线在点 M 处的曲率半径: ρ = 1 K = ( 1 + y ′ 2 ) 3 ∣ y ′ ′ ∣ 弧微分公式:ds = \sqrt{1+y'^2}dx=\sqrt{x'(t)+y'(t)^2}dt=\sqrt{\rho ^2 + \rho'^2}d\theta \\ 平均曲率: \overline {K}=|\frac{\Delta\alpha}{\Delta s}=|\frac{d\alpha}{ds}|=\frac{|y^n|}{\sqrt{(1+y'^2)^3}}=\frac{|\varphi'(t)\psi''(t)-\varphi''(t)\psi'(t)|}{[\varphi'^2(t)+\psi'^2(t)]^{\frac{3}{2}}} \\ 直线的曲率: K=0;半径为R的圆的曲率:K=\frac{1}{R} \\ 曲线在点M处的曲率半径:\rho=\frac{1}{K}=\frac{\sqrt{(1+y'^2)^3}}{|y''|} 弧微分公式:ds=1+y′2 dx=x(t)+y(t)2 dt=ρ2+ρ′2 dθ平均曲率:K=ΔsΔα=dsdα=(1+y′2)3 yn=[φ′2(t)+ψ′2(t)]23φ(t)ψ′′(t)φ′′(t)ψ(t)直线的曲率:K=0;半径为R的圆的曲率:K=R1曲线在点M处的曲率半径:ρ=K1=y′′(1+y′2)3

第四章 不定积分

4.1 常用不定积分公式

∫ f ( x ) d x = F ( x ) + c ; \int f(x)dx = F(x)+c; f(x)dx=F(x)+c;

第五章 定积分

5.1 基本概念

∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ ) Δ x i = lim ⁡ n → 0 ∑ i = 1 n f ( i n ) 1 n = F ( b ) − F ( a ) = F ( x ) ∣ b a , ( F ′ ( x ) = f ( x ) ) 连续 ⇒ 可积;有界 + 有限个间断点 ⇒ 可积; 可积 ⇒ 有界 ; 连续 ⇒ 原函数存在 Φ ( x ) = ∫ a x f ( t ) d t ⇒ Φ ′ ( x ) = f ( x ) \int ^b_a f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n}f(\xi)\Delta x_i=\lim_{n \to 0} \sum^{n}_{i=1}f(\frac{i}{n})\frac{1}{n}= F(b)-F(a)=F(x)|^a_b,(F'(x)=f(x)) \\ 连续 \Rightarrow可积;有界+有限个间断点 \Rightarrow 可积;\\ 可积 \Rightarrow 有界;连续 \Rightarrow 原函数存在 \\ \Phi(x)=\int^x_af(t)dt\Rightarrow \Phi'(x)=f(x) abf(x)dx=λ0limi=1nf(ξ)Δxi=n0limi=1nf(ni)n1=F(b)F(a)=F(x)ba,(F(x)=f(x))连续可积;有界+有限个间断点可积;可积有界;连续原函数存在Φ(x)=axf(t)dtΦ(x)=f(x)

第八章 多元函数微分法及应用

8.1 定义

∂ f ∂ x ∣ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) Δ x = d d x f ( x , y 0 ) ∣ x = x 0 = f x ( x 0 , y 0 ) = f x ( x , y ) ∣ ( x 0 , y 0 ) \frac{\partial f}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x \to 0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}=\frac{d}{dx}f(x,y_0)|_{x=x_0}=f_x(x_0,y_0)=f_x(x,y)|_{(x_0,y_0)} xf(x0,y0)=Δx0limΔxf(x+Δx,y)f(x,y)=dxdf(x,y0)x=x0=fx(x0,y0)=fx(x,y)(x0,y0)

8.2 微分

lim ⁡ ρ → 0 Δ z − f x ( x , y ) Δ x − f y ( x , y ) Δ y ρ = 0 ⇔ 可微,偏导连续 ⇒ 可微 ⇒ 连续 + 偏导存在 全微分: d z = f x ( x , y ) d x + f y ( x , y ) d y \lim_{\rho\to0}\frac{\Delta z-f_x(x,y)\Delta x-f_y(x,y)\Delta y}{\rho}=0 \Leftrightarrow 可微,偏导连续\Rightarrow可微\Rightarrow连续+偏导存在\\ 全微分:dz=f_x(x,y)dx+f_y(x,y)dy ρ0limρΔzfx(x,y)Δxfy(x,y)Δy=0可微,偏导连续可微连续+偏导存在全微分:dz=fx(x,y)dx+fy(x,y)dy

8.3 隐函数求导

1 0 F ( x , y ) = 0 ⇒ y = f ( x ) 且 d y d x = F x F y 2 0 F ( x , y , z ) = 0 ⇒ z = f ( x , y ) 且 ∂ z ∂ x = F x F y , ∂ z ∂ y = F y F z 1^0 \quad F(x,y)=0 \Rightarrow y=f(x)且\frac{dy}{dx}=\frac{F_x}{F_y} \\ 2^0 \quad F(x,y,z)=0 \Rightarrow z=f(x,y)且\frac{\partial z}{\partial x}= \frac{F_x}{F_y},\frac{\partial z}{\partial y}=\frac{F_y}{F_z} 10F(x,y)=0y=f(x)dxdy=FyFx20F(x,y,z)=0z=f(x,y)xz=FyFx,yz=FzFy

第十一章 无穷级数

11.1

常数项级数 ∑ n = 1 ∞ u n 常数项级数\sum_{n=1}^{\infin}u_n 常数项级数n=1un

  • 常用级数:
    等比级数 / 几何级数 : ∑ n = 0 ∞ { 收 = 1 1 − q ∣ q ∣ < 1 发| q | ≥ 1 P 级数: ∑ n = 1 ∞ 1 n p { 收 P > 1 发 0 < p ≤ 1 ; 交错 P 级数: ∑ n = 1 ∞ ( − 1 ) n 1 n p 收敛 { 绝对收敛 P > 1 条件收敛 0 < P ≤ 1 等比级数/几何级数: \sum_{n=0}^\infin \begin{cases}收=\frac{1}{1-q} \quad |q|<1 \\ 发 |q|\ge 1 \end{cases} \\ P级数:\sum_{n=1}^{\infin}\frac{1}{n^p} \begin{cases} 收 \quad P>1 \\ 发 \quad 0\lt p \le 1 \end{cases};交错P级数:\sum_{n=1}{\infin}(-1)^n\frac{1}{n^p}收敛\begin{cases} 绝对收敛 \quad P \gt 1 \\ 条件收敛 \quad 0 \lt P \le 1 \end{cases} 等比级数/几何级数:n=0{=1q1q<1发|q1P级数:n=1np1{P>10<p1;交错P级数:n=1(1)nnp1收敛{绝对收敛P>1条件收敛0<P1

参考:
【1】:数学之美:常用的微分,求导和积分公式大总结,http://t.csdn.cn/BVyTa

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值