Deep Active Learning(深度主动学习)

Deep Active Learning

 

最上方为监督学习,对面为非监督学习,之间包括增强学习、半监督学习、在线学习、主动学习。

Supervised Learing

 

将未标记的数据交给Work进行标记,然后将标记数据交给Learner进行训练。

Semi-Supervised Learning

 

在监督学习的基础上加了一条线,也就是把大量的未标记数据和少量的标记数据交给Learner进行训练,这样可以减少人工标记的时间。

Active Learning

 

通过Learner来决定哪些数据需要被标记,然后交给Work进行标记,重新训练Learner。

 

 

 

主动学习分为三种:

①membership query synthesis:由模型生成新的样本,可以决定生成样本的分布。

②stream-based selective sampling:一个一个的选择未标记样本,由模型来决定是否进行标记。

③pool-based sampling:数据储存在池中,从池中选择未标记样本进行标记。

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页