自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

You and Me

今天你吃了吗~

  • 博客(206)
  • 资源 (26)
  • 收藏
  • 关注

原创 欢迎访问,博客导航

欢迎访问!下面向您介绍本博客的相关内容~博客相关资源博客所有的文章和代码都是开源的,你可以在我的github和gitee找到相关的代码和文档。GithubGitee当然你也可以访问我的个人博客,查询相关文章。我的博客主要涉及到的内容深度学习图像处理机器学习数据分析绘图可视化OpenCVPythonR主要专栏YUV图像处理OpenCV实战Seaborn...

2020-05-03 17:49:54 460

原创 [OpenCV实战]50 用OpenCV制作低成本立体相机

本文主要讲述利用OpenCV制作低成本立体相机以及如何使用OpenCV创建3D视频,准确来说是模仿双目立体相机,我们通常说立体相机一般是指双目立体相机,就是带两个摄像头的那种(目就是指眼睛,双目就是两只眼睛),这种双目摄像机模仿人的视觉,所以应用很广泛(主要是工业机器人视觉)。双目摄像机也广泛应用于无人驾驶,比如特斯拉、图森未来,小鹏汽车在自家的无人驾驶汽车上都安载了立体相机,双目和多目的都有。另外双目视觉加上深度学习还蛮好水论文的。本文主要说的是低成本,实际上没人这样干,有专门的双目立体相机,已经非常成熟

2021-02-16 17:22:46 106 1

原创 [随笔所想] 牛年碎碎念-祝大家牛年大吉

今天是大年初一,第一个小惊喜就是关机后就没法开机的电脑,在今天又能正常开机啦!上午给长辈电话拜了年和朋友聊聊天,就马上到了吃团年饭时间啦!饭桌上老爸吐槽我做事不够圆滑,要更懂得为人处世一些。我说我确实不喜欢搞这一套,但是我过得开心不就好了吗!要那么圆滑干什么呢!有技术和做实事就足够我能过得好了!父母啊,总是想着老一套,圆滑的人事社会上吃的开,确实是这样,但是只是圆滑的人是不够的,最先要把自己本职工作做好吧!下午老妈的牌友叫她去打牌。为了不让老妈初一出去打牌,我说我陪打麻将!下午打牌果然是输啦。最近陪父母

2021-02-12 22:13:25 57 1

原创 [OpenCV实战]49 对极几何与立体视觉初探

本文主要介绍对极几何(Epipolar Geometry)与立体视觉(Stereo Vision)的相关知识。对极几何简单点来说,其目的就是描述是两幅视图之间的内部对应关系,用来对立体视觉进行建模,实际上就是一种约束条件,这样可以确定立体匹配时的最优解。对极几何是计算机视觉领域中一个基础概念,具体可以学习文章-对极几何(Epipolar)。对极几何/极几何在各个坐标系(世界坐标系,观察坐标系,像素坐标系)相互转换中是十分重要的一个概念。立体视觉是一种很常用的计算机视觉技术,其目的是从两幅或两幅以上的图像中推

2021-02-12 16:27:12 106 1

原创 [常用工具] cvat安装与使用指北

cvat是一个非常好用的标注工具,但是也是非常难以安装的标注工具,所以本文简单讲一讲如何安装与使用cvat。cvat最好在ubuntu18.04安装,windows平台安装难度很大,然后在其他平台使用。文章目录1 安装2 使用2.1 其他机器访问cvat服务器2.2 共享目录配置2.3 标注替换2.4 其他使用3 参考1 安装安装其实一步一步按照官方教程执行就好了,官方地址文档为cvat安装文档。安装最大的问题就是网速不好。具体步骤如下。step1 安装dockercvat在docker下运行,所

2021-02-10 09:27:49 70

原创 [R语言] R语言快速入门教程

本文主要是为了从零开始学习和理解R语言,简要介绍了该语言的最重要部分,以快速入门。主要参考文章:R-TutorialR语言程序的编写需要安装R或RStudio,通常是在RStudio中键入代码。但是RStudio个人感觉并不好用,因此本人编写的R语言程序都是在Jupyter Notebook平台使用。具体可以见在 Jupyter Notebook 中使用R语言。R语言和Python,matlab一样都是解释型语言,语法差别不大,容易入门。其他进阶内容见R语言个人笔记文章目录1 入门基础1.1 基础

2021-02-05 19:05:12 72

原创 [深度学习] imgaug边界框增强笔记

imgaug边界框增强笔记主要是讲述基于imgaug库对目标检测图像的边界框进行图像增强。本文需要掌握imgaug库的基本使用,imgaug库的基本使用见[深度学习] imgaug库使用笔记。文章目录0 示例图像和标注文件1 imgaug加载图像和标注数据2 边界框增强2.1 整张图像增强2.2 图像部分区域增强2.3 边界框超出图像范围解决办法3 保存增强图像和标注文件4 参考0 示例图像和标注文件示例图像如图所示# 对应的标注文件!cat demo.xml<?xml version

2021-02-02 19:26:36 91

原创 [深度学习] ubuntu18.04配置深度学习环境笔记

文章目录1 nvidia驱动安装2 CUDA10.2安装3 cudnn安装4 参考最近装过很多ubuntu18.04系统的nvidia驱动,cuda10.2,cudnn7.6.5,发现每次都会出现一些小问题。总结了具体步骤,做个记录。主要分为三个步骤:驱动安装,cuda安装,cudnn安装。本文主要参考了博客Ubuntu18.04安装CUDA10、CUDNN和Ubuntu18.04+CUDA10.2 深度学习开发环境配置指南。本文也适用于其他linux系统安装不同版本cuda,cudnn。1 nvidi

2021-01-14 20:12:18 93

原创 [随笔所想] 2021年新年碎碎念-加油了不起的干饭人!

加油了不起的干饭人!

2021-01-14 19:50:11 182 2

原创 [讲座论坛] 经济林之核桃类

核核桃属核桃树的种类 :核桃,山核桃、博客山核桃三者均为胡桃科植物,集果用、油用于一体,具有极高的经济价值。核桃类分布搜集了非常多的种质资源拍摄照片,以及产地的位置图片山核核桃品种主要要有要有3个。Pawnee 这个品种获得了金奖...

2020-12-27 21:31:25 87

原创 [讲座论坛] 竹资源培育与中国竹产业

1 总体概况竹林资源持续增加我国福建、江西、湖南、浙江4个省份毛竹林面积371万公顷,占我国毛竹林面积80%。产业规模迅速扩大转型升级取得重大进展最近几年竹子的高深加工水平得到提升,2019年去全国竹类产业产值超过了3000亿元。目前我国速生木主要是杨树,桉树,竹子等。2. 竹子资源利用现状我国有39个属,837个种(包括变种和栽培品种),分别约占世界竹子属种树43%和42%。其中毛竹,早竹,麻竹等定向林发展迅速。2.1 毛竹毛竹大,木材量多。且竹笋风味好。很多前辈对竹子在不同条件下进

2020-12-20 22:19:53 133

原创 [讲座论坛] 碧根果产业现状及产业化开发关键技术

文章目录全球碧根果产业动态美国碧根果产业现状碧根果产业发展关键技术立地条件(灌溉与土壤)品种选择(因地制宜)容器苗种植密度树形控制果实采后及品质提升碧根果发展机遇与挑战已开展的主要研究工作个人总结全球碧根果产业动态核桃是我国人工经济林种植面积最大的树种,种植范围有1,1.2亿亩。核桃和山核桃都属于胡桃属,是两个不同的种。山核桃又包括一些品种,其中碧根果源自美国,被称为美国山核桃又因为其壳薄被称为薄壳山核桃。一方面,碧根果在全球产业来看主要分布在澳大利亚,美国、墨西哥以及南非。这4个区域占全球总产量的9

2020-12-13 23:13:56 117

原创 [深度学习] Pytorch模型转换为onnx模型笔记

本文主要介绍将pytorch模型准确导出为可用的onnx模型。以方便OpenCV Dnn,NCNN,MNN,TensorRT等框架调用。所有代码见:Python-Study-Notes文章目录1 使用说明1.1 读取模型1.2 检测图像1.3 导出为onnx模型1.4 模型测试1.5 模型简化1.6 全部代码2 参考1 使用说明本文示例为调用pytorch预训练的mobilenetv2模型,将其导出为onnx模型。主要步骤如下:读取模型检测图像导出为onnx模型模型测试模型简化# 需要

2020-12-09 20:30:07 820

原创 [论文总结] 枣树的历史与现状研究进展

[论文总结] The historical and current research progress on jujube–a superfruit for the future论文信息 Liu et al. Horticulture Research (2020) 7:119论文网址文章目录[论文总结] The historical and current research progress on jujube–a superfruit for the future1 摘要2 介绍2.1 枣具体

2020-12-07 21:27:48 136

原创 [随笔所想] UBC学习生活经验分享

当时受到了很多人的帮助,在网上也查到了很多经验帖子,比如如何办理签证,如何填写表格,要准备哪些材料以及生活上要带哪些物品,等等。当时就想到等我办理好这些,也一定和大家分享,为更多的人提供一些参考。文章目录1 申请签证2 租房3 学习4 生活1 申请签证我办理的是学签,需要准备的东西如下,可能还不够1、 护照2、 邀请信3、 2寸彩色照片,白底照片,主要面部。(背面写上姓名和出生日期)4、 研究计划5、 最高学位学历证明(翻译件)要带上毕业证和学位证6、 无犯罪记录证明,需要公证 (翻译)

2020-12-07 21:26:37 101

原创 [论文总结] 物联网技术在现代林业中的应用

物联网的概念:物联网(The Internet of Things)是具有全面感知、可靠传输、智能处理特征的连接物理世界的网络,是互联网和通信网的拓展应用和网络延伸, 它通过感知识别、网络传输互联、计算处理等三层架构,实现了人们任何时间、任何地点及任何物体的连接。使人类可以以更加精细和劢态的方式管理生产和生活,提升人对物理世界实时控制和精确管理能力,从而实现资源优化配置和科学智能决策,从而提高整个社会的信息化能力。林业物联网:指物联网技术在林业生产、经营、管理和服务中的具体应用。实现林业生产科学化管理

2020-12-07 21:21:41 88

原创 [论文总结] 苗圃营建学习笔记

苗圃的类型1. 依据使用时间长短划分:固定苗圃:面积大,经营时间长,培育的苗木种类多,通过机械化实现集约经营临时苗圃:为短期完成一定地区的造林任务而建立的苗圃2. 依据所属行业划分林业苗圃园林苗圃实验苗圃综合苗圃3. 依据苗圃育苗面积划分特大型苗圃(育苗面积≥100 hm2 )大型苗圃 (育苗面积60-100 hm2)中性苗圃(育苗面积20-60 hm2)小型苗圃(育苗面积0-20 hm2)4. 依据建设标准划分现代化苗圃:生产作业机械化和自动化、培育技术专业化、

2020-12-07 21:20:44 85

原创 [论文总结] 石榴综述论文阅读笔记

文章目录1. 石榴汁作为功能食品; 有关其多酚,治疗优点和最新专利的全面综述1.1 内容1.2 总结1.3 个人总结2.石榴皮的抗菌潜力2.1 介绍2.2内容2.3 总结2.4 个人总结3.石榴作为生物活性成分来源的特点、性状及应用研究进展3.1 介绍3.2 石榴的化学组成3.3 变化取决于石榴品种和环境条件3.4 石榴化学成分的抑菌作用3.5 潜在的抗癌机制3.6 石榴提取物的应用3.7 结论3.8 个人总结4. 石榴树用水和灌溉原理4.1 介绍4.2 灌溉方法4.3 需水量4.4 用水效率和水生产率4.

2020-12-07 21:19:18 100

原创 [论文总结] 深度学习技术在植物领域的研究2

文章目录1. A Review on Deep Learning for Plant Species Classification using Leaf Vein (IF=15.2,2020)2.The Smart Image Recognition Mechanism for Crop Harvesting System in Intelligent Agriculture (IF=3.073,2020)2.1 研究目的2.2 系统模型2.3 目标检测模型2.4 结论3. Deep Convolution

2020-12-07 21:18:02 230

原创 [论文总结] 深度学习技术在植物领域的研究1

文章目录1. Detection and Counting of Marigold Flower Using Image Processing Technique (书籍,2019)2. A Review on Agricultural Advancement Based on Computer Vision and Machine Learning (书籍,2020)3. *Systematic review of deep learning techniques in plant disease det

2020-12-07 21:06:23 195

原创 [论文总结] 森林管理和造林业中复杂观念的转变

文章目录森林经营与营林复杂性观念的转变用ICO方法恢复森林结构复杂性的空间方面利用变密度间伐恢复沿海道格拉斯冷杉林的复杂性:对适应性的影响随着时间的推移和跨学科采用复杂性概念的模式将复杂性纳入造林规划的框架和战略对造林实践的影响森林经营与营林复杂性观念的转变[参考论文] Shifting conceptions of complexity in forest management and silviculture长期以来,操纵森林生态系统的复杂性一直是森林管理和造林的考虑因素。然而,在林业的许多历史中

2020-12-07 21:04:57 69

原创 [论文总结] 美国造林业过去30年的惊人变化

Silviculture in the United States: An Amazing Period of Change over the Past 30 Years前言管理环境的变化研究承诺的变化森林状况的变化科技的发展造林系统结论论文. Anthony et al.,Journal of Forestry, Volume 116, Issue 1, January 2018, Pages 55–67.前言1986年,《林业杂志》上发表了关于美国造林实践的系列六篇论文。 “概述:未来30年,过

2020-12-07 21:02:24 87

原创 [论文总结] 集约经营下人工林造林技术研究进展

文章目录Advances in Silviculture of Intensively Managed Plantations造林策略:种植面积,树种,种植密度密度管理:生产高交织的茎营林方向:整地、植被管理、施肥整地植被管理施肥成功推进造林计划所面临的挑战:对付新病原体总结Advances in Silviculture of Intensively Managed Plantations作者:Rafael A. Rubilar et al., Current Forestry Reports, 20

2020-12-07 21:00:45 131

原创 [论文总结] 均匀和不均匀造林对生态多样性的影响综述

文章目录1. 介绍2. 生态系统组成部分分析3. 讨论3.1 均匀年龄和非均匀年龄造林对比3.2 森林管理见解3.3 未来研究4. 个人总结1. 介绍文章介绍了森林经营的现状和问题,以及解释了均匀年龄造林和非均匀年龄造林的区别。均匀年龄造林有利于以多数为同一年龄的树木为主导的林分再生。非均匀年龄造林是支持至少三个年龄段的树种再生。两种方法在空间和时间上的实现方式不同。均匀年龄管理意味着进行明确的切割时间或最终切割,从而到另一个再生阶段。不均匀的造林管理意味着不断的局部砍伐,使林分连续地再生,并留下一些永

2020-12-07 20:57:54 65

原创 [论文总结] kmeans聚类和WGCNA

K-mean 聚类和WGCNA文章目录K-mean 聚类和WGCNA论文1论文2论文3总结总结了3篇论文中K-mean聚类和WGCNA的运用。论文1Comprehensive dissection of transcript and metabolite shifts during seed germination and post-germination stages in poplar[Qu et al. BMC Plant Biology, 2019]前言: 介绍了种子萌发过程,以及杨树

2020-12-07 20:55:47 131

原创 [深度学习] 深度学习优化器选择学习笔记

本文主要展示各类深度学习优化器Optimizer的效果。所有结果基于pytorch实现,参考github项目pytorch-optimizer(仓库地址)的结果。pytorch-optimizer基于pytorch实现了常用的optimizer,非常推荐使用并加星该仓库。文章目录1 简介2 结果A2GradExp(2018)A2GradInc(2018)A2GradUni(2018)AccSGD(2019)AdaBelief(2020)AdaBound(2019)AdaMod(2019)Adafactor

2020-11-19 17:54:35 249

原创 [编程基础] Python命令行解析库argparse学习笔记

Python argparse教程展示了如何使用argparse模块解析Python中的命令行参数。文章目录1 使用说明1.1 Python argparse可选参数1.2 Python argparse必需参数1.3 Python argparse位置参数1.4 Python argparse dest1.5 Python argparse type1.6 Python argparse default1.7 Python argparse metavar1.8 Python argparse appe

2020-10-31 09:13:35 97

原创 [深度学习] imgaug库使用笔记

imgaug是一款非常有用的python图像增强库,非常值得推荐应用于深度学习图像增强。其包含许多增强技术,支持图像分类,目标检测,语义分割,热图、关键点检测等一系列任务的图像增强。本文主要介绍imgaug基本使用,以及应用关键点和边界框增强。官方代码仓库:imgaug官方入门文档:imgaug doc增强效果预览:overview of augmentersApi:imgaug dpi# 安装imgaug模块# pip install imgaug1 加载和增强图片1.1 读图i

2020-10-24 10:07:39 265

原创 [编程基础] Python中*args和**kwargs参数的使用

本文主要介绍Python中*args和**kwargs参数的使用文章目录1 使用2 拓展3 参考1 使用在Python中,定义函数时可以使用两个特殊符号,以允许它们接受可变数量的参数。这两个特殊符号为*和**。通常*和args一起使用,**和kwargs一起使用。事实上args和kwargs可以用任何名称替代,之所以用args和kwargs仅仅是为了遵从通俗约定。args为arguments的缩写,表示多个参数。kwargs为 keyword arguments 的缩写,表示多个关键字参数。Pyth

2020-10-14 21:04:20 179

原创 [OpenCV实战]48 基于OpenCV实现图像质量评价

本文主要介绍基于OpenCV contrib中的quality模块实现图像质量评价。图像质量评估Image Quality Analysis简称IQA,主要通过数学度量方法来评价图像质量的好坏。本文需要OpenCV contrib库,OpenCV contrib库的编译安装见:OpenCV_contrib库在windows下编译使用指南本文所有代码见:OpenCV-Practical-Exercise文章目录1 OpenCV中图像质量评价算法介绍1.1 相关背景1.2 OpenCV中图像质

2020-10-09 19:07:13 884

原创 [OpenCV实战]47 基于OpenCV实现视觉显著性检测

人类具有一种视觉注意机制,即当面对一个场景时,会选择性地忽略不感兴趣的区域,聚焦于感兴趣的区域。这些感兴趣的区域称为显著性区域。视觉显著性检测(Visual Saliency Detection,VSD)则是一种模拟人类视觉并从图像中提取显著性区域的智能算法。如下面左边的图所示,人眼在观看该图片时会首先注意其中的小狗,自动忽略背景区域,小狗所在区域就是显著性区域。通过计算机视觉算法对左边的图像进行视觉显著性检测能够得到下图右边的结果,其中黑色区域为不显著区域,白色为显著区域,显著性检测在机器人领域、目标检测

2020-09-15 19:54:28 990 1

原创 [OpenCV实战]46 在OpenCV下应用图像强度变换实现图像对比度均衡

本文主要介绍基于图像强度变换算法来实现图像对比度均衡。通过图像对比度均衡能够抑制图像中的无效信息,使图像转换为更符合计算机或人处理分析的形式,以提高图像的视觉价值和使用价值。本文主要介绍通过OpenCV contrib中的intensity_transform模块实现图像对比度均衡。如果想了解具体相关方法原理见冈萨雷斯主编的图像处理经典书籍 数字图像处理Digital Image Processing 第四版第三章。本文需要OpenCV contrib库,OpenCV contrib库的编译安装见:O

2020-09-10 19:42:47 490

原创 [R语言] 基于R语言实现树形图的绘制

树状图(或树形图)是一种网络结构。它由一个根节点组成,根节点产生由边或分支连接的多个节点。层次结构的最后一个节点称为叶。本文主要基于R语言实现树形图的绘制。关于python实现树形图的绘制见:基于matplotlib实现树形图的绘制之所以还用R语言实现树形图的绘制,主要原因在于R语言所实现的树形图比python实现的更加多样。R语言树形图提供以下两种类型:分层树形图:类似CEO管理团队领导管理员工等等。聚类树形图:聚类将一组个体按相似性分组。它的结果可以可视化为一棵树。本文主要参考:Dendro

2020-09-05 10:10:23 1126

原创 [R语言] 基于R语言实现环状条形图的绘制

环状条形图(Circular barplot)是条形图的变体,图如其名,环状条形图在视觉上很吸引人,但也必须小心使用,因为环状条形图使用的是极坐标系而不是笛卡尔坐标系,每一个类别不共享相同的Y轴。环状条形图非常适合于周期性数据,本文主要介绍基于R语言实现环状条形图的绘制。本文主要参考链接:Circular barplotR语言的环状条形图主要基于tidyverse包实现,tidyverse是一组R包的集合,这些R包共享共同的原理并旨在无缝地协同工作,具体介绍见:tidyverse安装命令如下:in

2020-09-05 09:59:58 1271

原创 [python] 基于matplotlib实现圆环图的绘制

圆环图本质上是一个中间切出一块区域的饼状图。可以使用python和matplotlib库来实现。本文主要介绍基于matplotlib实现圆环图。本文所有代码见:Python-Study-Notes# 去掉警告import warningswarnings.filterwarnings("ignore")# 多行输出from IPython.core.interactiveshell import InteractiveShellInteractiveShell.ast_node_interact

2020-09-01 19:05:16 1220

原创 [python] 基于matplotlib实现雷达图的绘制

雷达图(也称为蜘蛛图或星形图)是一种可视化视图,用于使用一致的比例尺显示三个或更多维度上的多元数据。并非每个人都是雷达图的忠实拥护者,但我认为雷达图能够以视觉上吸引人的方式比较不同类别各个特征的值。本文主要讲述通过matplotlib绘制雷达图。本文所有代码见:Python-Study-Notes# 去掉警告import warningswarnings.filterwarnings("ignore")# 多行输出from IPython.core.interactiveshell import

2020-09-01 19:03:52 950

原创 [OpenCV实战]45 基于OpenCV实现图像哈希算法

目前有许多算法来衡量两幅图像的相似性,本文主要介绍在工程领域最常用的图像相似性算法评价算法:图像哈希算法(img hash)。图像哈希算法通过获取图像的哈希值并比较两幅图像的哈希值的汉明距离来衡量两幅图像是否相似。两幅图像越相似,其哈希值的汉明距离越小,通过这种方式就能够比较两幅图像是否相似。在实际应用中,图像哈希算法可以用于图片检索,重复图片剔除,以图搜图以及图片相似度比较。为什么图像哈希算法能够评估两幅图像的相似性,这就需要从哈希值说起,哈希值计算算法的本质就是对原始数据进行有损压缩,有损压缩后的固定

2020-08-27 19:32:15 590

原创 [OpenCV实战]44 使用OpenCV进行图像超分放大

图像超分辨率(Image Super Resolution)是指从低分辨率图像或图像序列得到高分辨率图像。图像超分辨率是计算机视觉领域中一个非常重要的研究问题,广泛应用于医学图像分析、生物识别、视频监控和安全等领域。随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,相比传统图像超分方法,取得了更优的性能和效果。文章目录1 OpenCV dnn_superres模块介绍2 OpenCV dnn_superres模块使用2.1 图像超分放大单输出2.1.1 接口介绍2.1.2 示例代码2.1

2020-08-24 20:19:35 1212 4

原创 [OpenCV实战]43 使用OpenCV进行背景分割

运动背景分割法Background Segment主要是指通过不同方法拟合模型建立背景图像,将当前帧与背景图像进行相减比较获得运动区域。下图所示为检测图像:通过前面的检测帧建立背景模型,获得背景图像。然后检测图像与背景图像相减即为运动图像,黑色区域为背景,白色区域为运动目标,如下图所示:在OpenCV标注库中有两种背景分割器:KNN,MOG2。但是实际上OpenCV_contrib库的bgsegm模块中还有其他几种背景分割器。本文主要介绍OpenCV_contrib中的运动背景分割模型及其用法,并对

2020-08-14 13:16:18 466

原创 [常用工具] OpenCV_contrib库在windows下编译使用指南

本文主要讲述opencv及opencv_contrib库在windows下基于vs2017编译安装指南。所用OpenCV版本为OpenCV4.4,编译平台为vs2017。文章目录1 下载2 编译与安装2.1 配置OpenCV标准库2.2 配置OpenCV_contrib库2.3 OpenCV需求配置2.3.1 配置优化编译选项2.3.2 去除不必要选项2.4 编译OpenCV2.5 其他平台与语言环境的OpenCV_contrib库使用3 配置与使用3.1 配置3.2 测试4 参考4.1 官方仓库4.2

2020-08-11 20:53:25 653

基于深度学习识别人脸性别和年龄

基于深度学习识别人脸性别和年龄!C++/python代码 https://blog.csdn.net/LuohenYJ/article/details/88134634

2019-03-04

基于特征点匹配的视频稳像

基于特征点匹配的视频稳像,opencv。有C++和python代码。 这个文件夹里面的代码有更新,详细见https://blog.csdn.net/luohenyj/article/details/88355444

2019-03-08

Python编程快速上手附属材料.zip

个人整理《Python编程快速上手:让繁琐工作自动化》学习笔记所用到的表格音频文件。关于Python编程快速上手附属材料所有信息。使用见https://blog.csdn.net/LuohenYJ/article/details/93652495

2019-07-01

TE田纳西-伊斯曼过程数据集

TE过程控制数据集,其中22个训练集,22个测试集。每个训练集由52个测量信号组成。共480行。每个测试集由52个测量信号组成。共960行。https://blog.csdn.net/LuohenYJ/article/details/78441707

2017-11-03

使用Hu矩进行形状匹配

使用Hu矩进行形状匹配 https://blog.csdn.net/LuohenYJ/article/details/88603274

2019-03-16

电子学(第二版 吴利民译)

哈佛大学经典电子学教材,中文版。主要涉及电路基本原理及应用

2017-10-16

文本检测_opencv_DNN

基于深度学习的文本检测,不是文本识别! https://blog.csdn.net/LuohenYJ

2019-03-06

OfficeHome-RealWorld部分数据集

OfficeHome图像数据集RealWorld部分,无Art、Clipart、Product三部分

2020-11-24

OfficeHome-Art、Clipart、Product部分数据集

OfficeHome图像数据集Art、Clipart、Product三部分,无realworld数据集部分

2020-11-24

cmake入门教程(linux)

cmake入门教程(linux),非常不错。不过是linux版本的,但是windows也可以使用。个人觉得可以看看

2018-08-04

yuv420p基本图像处理

目前数字图像处理技术已经应用生活各个方面,但是大部分教程都是利用第三方库(如opencv)对RGB图像格式进行处理。对于YUV图像格式的图像处理教程较少。搬运总结了多个大牛的文章,总结出来这个YUV图像像素处理教程。https://blog.csdn.net/luohenyj/category_9281576.html

2018-12-11

人脸识别 – OpenCV, Dlib and Deep Learning

各种人脸检测方法,并对各种方法进行比较。下面是主要的人脸检测方法: 1 OpenCV中的Haar Cascade人脸分类器; 2 OpenCV中的深度学习人脸分类器; 3 Dlib中的hog人脸分类器; 4 Dlib中的深度学习人脸分类器。

2019-03-05

基于opencv实现透明斗篷

基于图像处理实现透明斗篷,方法很简单。代码更简单。python和C++代码都提供、使用说明https://blog.csdn.net/LuohenYJ/article/details/88134634

2019-03-06

yolov3 opencv教程

yolov3 opencv教程,支持C++和python。 主要是读入图像进行目标识别 文章地址:https://blog.csdn.net/LuohenYJ/article/details/88581335

2019-03-13

yolov3_OpenImage图像训练教程

yolov3_OpenImage图像训练教程 https://blog.csdn.net/LuohenYJ/article/details/88581335

2019-03-16

使用OpenCV寻找平面图形的质心

使用OpenCV寻找平面图形的质心 https://blog.csdn.net/LuohenYJ/article/details/88599334

2019-03-16

caffe必备文件.zip

我的caffe训练必备文件,来自https://blog.csdn.net/LuohenYJ/article/details/98873369

2019-08-10

热力工程计算图册

热力工程计算图册,适合进行热力计算,包含所有热力计算公式

2017-10-16

机器学习要领/Machine Learning Yearning

吴恩达, Andrew NG 的关于机器学习策略的工具书的原版

2018-08-21

零基础深度学习

零基础快速学习深度学习,中文版本的。虽然说零基础,但是还是要有点数学基础

2017-10-15

深度学习与tensorflow

非常不错的tensorflow入门书籍,讲了深度学习的基础理论。适合新手

2018-04-18

大数据与机器学习

大数据,机器学习,深度学习。以深度学习(或者机器学习)建立于大数据之上的一些方法论

2018-04-15

Qt及Qt Quick开发实战精解.

Qt及Qt Quick开发实战精解,适合入门,但是进一步学习还是需要练习

2017-10-16

一天搞懂深度学习.

一天搞懂深度学习,李宏毅版本。非常不错,但是只是大概了解,具体知识还是要好好学习

2017-10-15

深度学习 方法及应用

用于了解各类深度神经网络的结构,及其主要应用。其中对于许多英文关键词都有对应的中文翻译

2017-10-15

一天搞懂深度学习

一天搞懂深度学习,非常非常适合入门。不过是英文的。

2017-10-15

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除