题目描述
输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。
代码实现:
二叉树节点定义:
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
方法一 递归:二叉树为空时,返回0;否则,二叉树的深度(高度)等于二叉树左子树高度和右子树高度中较大值加上1(加上一个根节点),然后左子树的高度又等于左子树的左子树高度和左子树的右子树的高度中较大值加1....这是一个不断求解子问题的过程,也就是递归。
class Solution {
public:
int TreeDepth(TreeNode* pRoot)
{
if(pRoot==NULL)return 0;
int Dleft=TreeDepth(pRoot->left);
int Dright=TreeDepth(pRoot->right);
int depth=Dleft>Dright?Dleft+1:Dright+1;
return depth;
}
};
方法二 非递归:创建一个队列用来进行层序遍历二叉树,每次带入一层节点进去队列中,记录二叉树的层数(即深度),具体看以下代码。
class Solution {
public:
int TreeDepth(TreeNode* pRoot)
{
if(pRoot==NULL)return 0;
queue<TreeNode*>q;
q.push(pRoot);
int depth=0;
while(!q.empty())
{
++depth;
for(int i=0;i<q.size();++i)
{
TreeNode*temp=q.front();
q.pop();
if(temp->left)
q.push(temp->left);
if(temp->right)
q.push(temp->right);
}
}
return depth;
}
};