注意:本文引用自专业人工智能社区Venus AI
更多AI知识请参考原站 ([www.aideeplearning.cn])
问题描述
汽车价格预测是一个旨在预估二手车市场中汽车售价的问题。这个问题涉及到分析各种影响汽车价格的因素,如品牌、车龄、性能参数等。准确的价格预测对于卖家定价和买家预算规划都非常重要。
项目目标
此项目的主要目标是开发一个预测模型,该模型能够根据汽车的各种特征准确预测其市场价值。这个模型应能处理不同类型的数据,包括数值数据和类别数据,并在预测准确度和计算效率之间取得平衡。
项目应用
- 二手车交易:帮助买家和卖家了解特定车辆的公平市场价值。
- 汽车评估:为汽车评估公司提供自动化的价值评估工具。
- 市场分析:分析市场趋势,预测未来价值。
- 个人决策支持:帮助个人用户在购买或出售汽车时做出更明智的决策。
数据集描述
这个数据集包含以下特征:
汽车ID,符号,汽车名称,燃油类型,吸气,门号,车身,驱动轮,发动机位置,轴距,车长,车宽,车高,整备质量,发动机类型,气缸数,发动机尺寸,燃油系统,硼比,冲程,压缩比,马力,峰值转速,城市英里数,高速公路英里数。
模型选择和科学计算库依赖
本项目使用的模型:
- 线性回归
- 决策树回归
- 随机森林回归
本项目依赖的科学计算库
- matplotlib==3.7.1
- pandas==2.0.2
- scikit_learn==1.2.2
- seaborn==0.13.0
项目详细代码
#imports
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
data = pd.read_csv('car_price.csv')
data.head(10)
1. 探索数据特性
print("Rows: ",data.shape[0])
print("Columns: ",data.shape[1])
Rows: 205 Columns: 26
data.info()<