N阶楼梯上楼问题

题目描述

N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。(要求采用非递归)

输入描述:

输入包括一个整数N,(1<=N<90)。

输出描述:

可能有多组测试数据,对于每组数据,
输出当楼梯阶数是N时的上楼方式个数。
示例1

输入

4

输出

5

此题考查的是斐波那契数列。

对于n阶的楼梯,设其上楼方法有f(n)种方法。

上到n阶,只能从n-1阶上一阶,或从n-2阶上两阶,除此之外再无其他方法。所以有f(n) = f(n-1) + f(n-2)

由此可以看出此题是一个dp问题;


代码:

#include <iostream>
#include <algorithm>
#include <stdio.h>
using namespace std;

int main()
{
    int n;
    int i;
    while(cin>>n)
    {
        if(n == 1 || n == 2)
        {
            cout<<n<<endl;
        }
        else
        {
            int p[n+1]={0};
            p[1] = 1;
            p[2] = 2;

            for(i=3;i<=n;i++)
                p[i] = p[i-1] + p[i-2];
            cout<<p[n]<<endl;
        }

    }
    return 0;
}

阅读更多
个人分类: 刷题学习
上一篇A+B
下一篇找位置
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭