难度中等474
给你一个整数数组 nums
,你可以对它进行一些操作。
每次操作中,选择任意一个 nums[i]
,删除它并获得 nums[i]
的点数。之后,你必须删除 所有 等于 nums[i] - 1
和 nums[i] + 1
的元素。
开始你拥有 0
个点数。返回你能通过这些操作获得的最大点数。
示例 1:
输入:nums = [3,4,2] 输出:6 解释: 删除 4 获得 4 个点数,因此 3 也被删除。 之后,删除 2 获得 2 个点数。总共获得 6 个点数。
示例 2:
输入:nums = [2,2,3,3,3,4] 输出:9 解释: 删除 3 获得 3 个点数,接着要删除两个 2 和 4 。 之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。 总共获得 9 个点数。
提示:
1 <= nums.length <= 2 * 10^4
1 <= nums[i] <= 10^4
思路:根据题意,选取了nums[i],就不能选取nums[i]-1和nums[i]+1,因此如果我们要选nums[i],那么为了得到最大点数,我们必须要选择全部的nums[i]。
我们可以直接统计出nums[i]出现的次数count[nums[i]],那么如果我们选择nums[i],答案就累计上nums[i]*count[nums[i]]。
虽然题目说,选择了i之后,不能选择i-1和i+1,但是假如我们就是从小往大考虑,就会发现,如果我们保持从小到达,那么选择了i之后,不能选择i-1和i+1这个条件就可以直接转化为选择了i,就不能选择i-1。
我们使用动态规划思想,dp[i]表示在1~i这些值中进行选择,能够获取的最大点数,那么有状态转移方程:
代码如下:为了节省空间,笔者直接将dp[i]初始化为count[i]*i。
class Solution {
public:
int deleteAndEarn(vector<int>& nums) {
const int maxn = 1e4 + 7;
int i, dp[maxn], max_value = 0;
memset(dp, 0, sizeof(dp));
for(i = nums.size() - 1; i >= 0; -- i){
dp[nums[i]] += nums[i];
max_value = max(max_value, nums[i]);
}
for(i = 2; i <= max_value; ++ i){
dp[i] = max(dp[i - 2] + dp[i], dp[i - 1]);
}
return dp[max_value];
}
};