740. 删除并获得点数

740. 删除并获得点数

难度中等474

给你一个整数数组 nums ,你可以对它进行一些操作。

每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。

开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:

输入:nums = [3,4,2]
输出:6
解释:
删除 4 获得 4 个点数,因此 3 也被删除。
之后,删除 2 获得 2 个点数。总共获得 6 个点数。

示例 2:

输入:nums = [2,2,3,3,3,4]
输出:9
解释:
删除 3 获得 3 个点数,接着要删除两个 2 和 4 。
之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。
总共获得 9 个点数。

提示:

  • 1 <= nums.length <= 2 * 10^4
  • 1 <= nums[i] <= 10^4

思路:根据题意,选取了nums[i],就不能选取nums[i]-1和nums[i]+1,因此如果我们要选nums[i],那么为了得到最大点数,我们必须要选择全部的nums[i]。

我们可以直接统计出nums[i]出现的次数count[nums[i]],那么如果我们选择nums[i],答案就累计上nums[i]*count[nums[i]]。

虽然题目说,选择了i之后,不能选择i-1和i+1,但是假如我们就是从小往大考虑,就会发现,如果我们保持从小到达,那么选择了i之后,不能选择i-1和i+1这个条件就可以直接转化为选择了i,就不能选择i-1。

我们使用动态规划思想,dp[i]表示在1~i这些值中进行选择,能够获取的最大点数,那么有状态转移方程:

dp[i]=max(dp[i-2]+count[i]*i,dp[i-1])

代码如下:为了节省空间,笔者直接将dp[i]初始化为count[i]*i。

class Solution {
public:
    int deleteAndEarn(vector<int>& nums) {
        const int maxn = 1e4 + 7;
        int i, dp[maxn], max_value = 0;
        memset(dp, 0, sizeof(dp));
        for(i = nums.size() - 1; i >= 0; -- i){
            dp[nums[i]] += nums[i];
            max_value = max(max_value, nums[i]);
        }
        for(i = 2; i <= max_value; ++ i){
            dp[i] = max(dp[i - 2] + dp[i], dp[i - 1]);
        }
        return dp[max_value];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值