1219. 黄金矿工

本文介绍了一个关于黄金矿工的问题,其中涉及到在给定的网格中通过深度优先搜索策略寻找最大黄金收集路径。题目要求矿工只能从有黄金的单元格出发,且每一步只能向上下左右四个方向移动,且每个单元格只能被开采一次。示例给出了两个具体实例,解释了如何使用DFS找到最优解。解决方案包括一个DFS函数,该函数递归地遍历所有可能的路径并记录最大的黄金总和。
摘要由CSDN通过智能技术生成

1219. 黄金矿工

难度中等182收藏分享切换为英文接收动态反馈

你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0

为了使收益最大化,矿工需要按以下规则来开采黄金:

  • 每当矿工进入一个单元,就会收集该单元格中的所有黄金。
  • 矿工每次可以从当前位置向上下左右四个方向走。
  • 每个单元格只能被开采(进入)一次。
  • 不得开采(进入)黄金数目为 0 的单元格。
  • 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。

示例 1:

输入:grid = [[0,6,0],[5,8,7],[0,9,0]]
输出:24
解释:
[[0,6,0],
 [5,8,7],
 [0,9,0]]
一种收集最多黄金的路线是:9 -> 8 -> 7。

示例 2:

输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
输出:28
解释:
[[1,0,7],
 [2,0,6],
 [3,4,5],
 [0,3,0],
 [9,0,20]]
一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。

提示:

  • 1 <= grid.length, grid[i].length <= 15
  • 0 <= grid[i][j] <= 100
  • 最多 25 个单元格中有黄金。

思路:实际上阅读本题就可以发现本题就是一个DFS问题,当然实际更严格的应该说是回溯法,因为每个位置可能存在多个可决策方向,因此需要取拥有最大金矿和的路径,在实际的实现中,我们有更简单的做法,就是每一层DFS都取max,因为矿的价值一定大于0,因此同一条路径上,到大终点时的矿和一定比路径上其他点大。

class Solution {
public:

    int n, m, max_golden = 0, dir[4][2] = {
        {0, -1},
        {0, 1},
        {1, 0},
        {-1, 0},
    };

    void DFS(vector<vector<int>>& grid, int sx, int sy, int sum_value){//DFS实现
        max_golden = max(sum_value, max_golden);
        int x, y, nx, ny, index, temp_value;
        for(index = 0; index < 4; ++ index){
            nx = sx + dir[index][0];
            ny = sy + dir[index][1];
            if(nx >= 0 && nx < n && ny >= 0 && ny < m && grid[nx][ny]){
                temp_value = grid[nx][ny];
                grid[nx][ny] = 0;
                DFS(grid, nx, ny, sum_value + temp_value);
                grid[nx][ny] = temp_value;
            }
        }
    }

    int getMaximumGold(vector<vector<int>>& grid) {
        int i, j, temp_value;
        n = grid.size(), m = grid[0].size();
        for(i = 0; i < n; ++ i){
            for(j = 0; j < m; ++ j){
                if(grid[i][j]) {
                    temp_value = grid[i][j];
                    grid[i][j] = 0;
                    DFS(grid, i, j, temp_value);
                    grid[i][j] = temp_value;
                }
                
            }
        }
        return max_golden;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值