Python自动生成Excel可视化数据报表

从一条条的数据中,创建出一张数据报表,得出你想要的东西,提高效率。

主要使用到pandas、xlwings以及matplotlib这几个库。

先来看一下动态的GIF,都是程序自动生成。

效果图:

准备数据:

下面我们就来看看这个案例吧,水果蔬菜销售报表。

原始数据如下,主要有水果蔬菜名称、销售日期、销售数量、平均价格、平均成本、总收入、总成本、总利润等。

代码实现:

先导入相关库,使用pandas读取原始数据。

import pandas as pd
import xlwings as xw
import matplotlib.pyplot as plt

# 对齐数据
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)

# 读取数据
df = pd.read_csv(r"fruit_and_veg_sales.csv")
print(df)

结果如下。

一共是有1000行的销售数据。

使用xlwings库创建一个Excel工作簿,在工作簿中创建一个表,表名为fruit_and_veg_sales,然后将原始数据复制进去。

# 创建原始数据表并复制数据
wb = xw.Book()
sht = wb.sheets["Sheet1"]
sht.name = "fruit_and_veg_sales"
sht.range("A1").options(index=False).value = df

关于xlwings库的使用,小F推荐两个文档地址

中文版:

https://www.kancloud.cn/gnefnuy/xlwings-docs/1127455

英文版:

https://docs.xlwings.org/en/stable/index.html

推荐使用中文版,可以降低学习难度...

当然关于Excel的VBA操作,也可以看看微软的文档。

地址:

https://docs.microsoft.com/zh-cn/office/vba/api/overview/excel

将原始数据取过来后,再在工作簿中创建一个可视化表,即Dashboard表。

# 创建表
wb.sheets.add('Dashboard')
sht_dashboard = wb.sheets('Dashboard')

现在,我们有了一个包含两个工作表的Excel工作簿。fruit_and_veg_sales表有我们的数据,Dashboard表则是空白的。

下面使用pandas来处理数据,生成Dashboard表的数据信息。

DashBoard表的头两个表格,一个是产品的利润表格,一个是产品的销售数量表格。

使用到了pandas的数据透视表函数。

# 总利润透视表
pv_total_profit = pd.pivot_table(df, index='类别', values='总利润(美元)', aggfunc='sum')
print(pv_total_profit)

# 销售数量透视表
pv_quantity_sold = pd.pivot_table(df, index='类别', values='销售数量', aggfunc='sum')
print(pv_quantity_sold)

得到数据如下。

稍后会将数据放置到Excel的表中去。

下面对月份进行分组汇总,得出每个月的销售情况。

# 查看每列的数据类型
print(df.dtypes)
df["销售日期"] = pd.to_datetime(df["销售日期"])

# 每日的数据情况
gb_date_sold = df.groupby(df["销售日期"].dt.to_period('m')).sum()[["销售数量", '总收入(美元)', '总成本(美元)', "总利润(美元)"]]
gb_date_sold.index = gb_date_sold.index.to_series().astype(str)
print(gb_date_sold)

得到结果如下。

这里先对数据进行了查询,发现日期列为object,是不能进行分组汇总的。

所以使用了pd.to_datetime()对其进行了格式转换,而后根据时间进行分组汇总,得到每个月的数据情况。

最后一个groupby将为Dashboard表提供第四个数据信息。

# 总收入前8的日期数据
gb_top_revenue = (df.groupby(df["销售日期"])
    .sum()
    .sort_values('总收入(美元)', ascending=False)
    .head(8)
    )[["销售数量", '总收入(美元)', '总成本(美元)', "总利润(美元)"]]
print(gb_top_revenue)

总收入前8的日期,得到结果如下。

现在我们有了4份数据,可以将其附加到Excel中。

# 设置背景颜色, 从A1单元格到Z1000单元格的矩形区域
sht_dashboard.range('A1:Z1000').color = (198, 224, 180)

# A、B列的列宽
sht_dashboard.range('A:B').column_width = 2.22

# B2单元格, 文字内容、字体、字号、粗体、颜色、行高(主标题)
sht_dashboard.range('B2').value = '销售数据报表'
sht_dashboard.range('B2').api.Font.Name = '黑体'
sht_dashboard.range('B2').api.Font.Size = 48
sht_dashboard.range('B2').api.Font.Bold = True
sht_dashboard.range('B2').api.Font.Color = 0x000000
sht_dashboard.range('B2').row_height = 61.2

# B2单元格到W2单元格的矩形区域, 下边框的粗细及颜色
sht_dashboard.range('B2:W2').api.Borders(9).Weight = 4
sht_dashboard.range('B2:W2').api.Borders(9).Color = 0x00B050

# 不同产品总的收益情况图表名称、字体、字号、粗体、颜色(副标题)
sht_dashboard.range('M2').value = '每种产品的收益情况'
sht_dashboard.range('M2').api.Font.Name = '黑体'
sht_dashboard.range('M2').api.Font.Size = 20
sht_dashboard.range('M2').api.Font.Bold = True
sht_dashboard.range('M2').api.Font.Color = 0x000000

# 主标题和副标题的分割线, 粗细、颜色、线型
sht_dashboard.range('L2').api.Borders(7).Weight = 3
sht_dashboard.range('L2').api.Borders(7).Color = 0x00B050
sht_dashboard.range('L2').api.Borders(7).LineStyle = -4115

先配置一些基本内容,比如文字,颜色背景,边框线等,如下图。

使用函数,批量生成四个表格的格式。

# 表格生成函数.
def create_formatted_summary(header_cell, title, df_summary, color):
    """
    Parameters
    ----------
    header_cell : Str
        左上角单元格位置, 放置数据

    title : Str
        当前表格的标题

    df_summary : DataFrame
        表格的数据

    color : Str
        表格填充色
    """

    # 可选择的表格填充色
    colors = {"purple": [(112, 48, 160), (161, 98, 208)],
              "blue": [(0, 112, 192), (155, 194, 230)],
              "green": [(0, 176, 80), (169, 208, 142)],
              "yellow": [(255, 192, 0), (255, 217, 102)]}

    # 设置表格标题的列宽
    sht_dashboard.range(header_cell).column_width = 1.5

    # 获取单元格的行列数
    row, col = sht_dashboard.range(header_cell).row, sht_dashboard.range(header_cell).column

    # 设置表格的标题及相关信息, 如:字号、行高、向左居中对齐、颜色、粗体、表格的背景颜色等
    summary_title_range = sht_dashboard.range(row, col)
    summary_title_range.value = title
    summary_title_range.api.Font.Size = 14
    summary_title_range.row_height = 32.5
    # 垂直对齐方式
    summary_title_range.api.VerticalAlignment = xw.constants.HAlign.xlHAlignCenter
    summary_title_range.api.Font.Color = 0xFFFFFF
    summary_title_range.api.Font.Bold = True
    sht_dashboard.range((row, col),
                        (row, col + len(df_summary.columns) + 1)).color = colors[color][0]  # Darker color

    # 设置表格内容、起始单元格、数据填充、字体大小、粗体、颜色填充
    summary_header_range = sht_dashboard.range(row + 1, col + 1)
    summary_header_range.value = df_summary
    summary_header_range = summary_header_range.expand('right')
    summary_header_range.api.Font.Size = 11
    summary_header_range.api.Font.Bold = True
    sht_dashboard.range((row + 1, col),
                        (row + 1, col + len(df_summary.columns) + 1)).color = colors[color][1]  # Darker color
    sht_dashboard.range((row + 1, col + 1),
                        (row + len(df_summary), col + len(df_summary.columns) + 1)).autofit()

    for num in range(1, len(df_summary) + 2, 2):
        sht_dashboard.range((row + num, col),
                            (row + num, col + len(df_summary.columns) + 1)).color = colors[color][1]

    # 找到表格的最后一行
    last_row = sht_dashboard.range(row + 1, col + 1).expand('down').last_cell.row
    side_border_range = sht_dashboard.range((row + 1, col), (last_row, col))

    # 给表格左边添加带颜色的边框
    sht_dashboard.range(side_border_range).api.Borders(7).Weight = 3
    sht_dashboard.range(side_border_range).api.Borders(7).Color = xw.utils.rgb_to_int(colors[color][1])
    sht_dashboard.range(side_border_range).api.Borders(7).LineStyle = -4115


# 生成4个表格
create_formatted_summary('B5', '每种产品的收益情况', pv_total_profit, 'green')
create_formatted_summary('B17', '每种产品的售出情况', pv_quantity_sold, 'purple')
create_formatted_summary('F17', '每月的销售情况', gb_date_sold, 'blue')
create_formatted_summary('F5', '每日总收入排名Top8 ', gb_top_revenue, 'yellow')

得到结果如下。

可以看到,一行行的数据经过Python的处理,变为一目了然的表格。

最后再绘制一个matplotlib图表,添加一张logo图片,并保存Excel文件。

# 中文显示
plt.rcParams['font.sans-serif']=['SimHei']

# 使用Matplotlib绘制可视化图表, 饼图
fig, ax = plt.subplots(figsize=(6, 3))
pv_total_profit.plot(color='g', kind='bar', ax=ax)

# 添加图表到Excel
sht_dashboard.pictures.add(fig, name='ItemsChart',
                           left=sht_dashboard.range("M5").left,
                           top=sht_dashboard.range("M5").top,
                           update=True)

# 添加logo到Excel
logo = sht_dashboard.pictures.add(image="pie_logo.png",
                                  name='PC_3',
                                  left=sht_dashboard.range("J2").left,
                                  top=sht_dashboard.range("J2").top + 5,
                                  update=True)

# 设置logo的大小
logo.width = 54
logo.height = 54

# 保存Excel文件
wb.save(rf"水果蔬菜销售报表.xlsx")

此处需设置一下中文显示,否则会显示不了中文,只有一个个方框。

得到最终的水果蔬菜销售报表。

本文的示例代码,可以在Mac+Excel2016中运行的,与Windows还是会有一些区别,API函数的调用(pywin32 or appscript)。

比如表格文字的字体设置。

# Windows
sht_dashboard.range('B2').api.font.name = '黑体'

# Mac
sht_dashboard.range('B2').api.font_object.name.set('黑体')

资料下载:

代码及相关数据下载: https://pan.baidu.com/s/1zkNfKcNC-kYSqQDHcu_voQ?pwd=j2fh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金戈鐡馬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值