线性回归&最小二乘法&最小绝对值偏差

在进行线性回归时,有这样一个想法,为什么不用这样的直线,它使得每个点到直线的 距离 之和最小?
这个 距离 (点与直线在 y轴 上的距离)之和叫做 least absolute deviation,也有人叫它 最小一乘法:
在这里插入图片描述
那我们为什么不用点到直线的 垂直距离 来作为我们的最小距离呢?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最小一乘法是线性回归理解起来最直观的做法,而且拟合效果也很好,据说有实验表明,最小一乘法做的线性拟合,和靠人眼估计做的拟合非常接近。关键问题是,最小二乘法是让误差的平方和最小,这个可以用偏导数来研究,甚至只靠配方法就能直接给出最优解,所以可以给出参数的公式,虽然最小一乘法相比最小二乘估计相比有更好的 稳健性对异常值更不敏感(因为平方嘛,它让较小值更小,较大值更大)但最小一乘法因为在x=0时不可导,不利于数值计算,这是它的证明:
Least Squares Fitting–Perpendicular Offsets

关于最小绝对偏差和最小二乘法的文章:
Least squares
Least absolute deviations
在这里插入图片描述
所以一般选择最小二乘。而最小一乘法是让误差的绝对值之和最小,数学上解决这个问题比最小二乘法复杂得多,它只是 看起来简单
在这里插入图片描述
当然这些是其他原因,最主要的原因是:正态分布模型下 BLUE( best linear unbiased estimator)

参考:在进行线性回归时,为什么最小二乘法是最优方法?

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值