Augmentation-Free Graph Contrastive Learning(论文笔记)

证明了传统图增强方法对GCN谱图卷积的影响:

结论:

1. 证明edge adding, edge dropping and graph diffusion的图增强方法会影响图的中高频信息。

2. 证明attribute masking 会影响图的高频信息。

(具体证明看文献)

        对于异质图,高频分量所携带的信息对下游分类性能更有效。如文献[20,21]所示(看原文)。以最大化互信息为目标(Maximize mutual information)学习后的嵌入[10]鼓励只捕获不变信息(低频信息)。虽然现有的图增强算法促进了GCL在传统(同质)基准上的成功,但当高频信息至关重要时(异质图),它们会导致次优表示。

        另外提出一个假设:对于一个节点i,标签为yi,其邻居的标签从分布P (yi)中独立抽样。

证明一个引理所有具有相同标签的聚合节点特征,无论是否同质性,都具有相同的嵌入

(懒得看了,有兴趣自己看)

好了一堆狗屁证明之后,开始介绍模型。

1. 两层GCN加一层MLP.

(注:异质图也当同质图来使。Ma el al.[46]表明,根据我们的假设1,GCN足以捕获异亲性图中的信息。)

2. 损失函数:

 

Z表示节点嵌入。

  每次迭代时采样b个节点形成种子节点集S;及其周围的T -hop邻居组成节点池P。对于每个种子节点vi∈S,选取节点池中相似性最高的top-K个节点为其正集,表示为Sipos = {vi, v1i, v2i,…vKpos i}。

负采样以及什么叫做最相似的top-K节点没找到。这么重要的东西居然不说清楚!这可事关如何训练的问题,代码我也没找到(有找到的可以评论告诉我)

结论:AF-GCL在8个同质图基准中有4个优于最先进的GCL算法,并在剩下的4个数据集上实现了具有竞争力的性能。此外,AF-GCL是第一个同时适用于同质图和异质图的算法。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二流子学程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值