数据结构与算法——30. 广度、深度优先搜索及骑士周游问题

一、广度优先搜索(Breadth First Search,BFS)

在前面的词梯问题中,在单词关系图建立完成以后,需要继续在图中寻找词梯问题的最短序列,这就需要用到“广度优先搜索(Breadth First Search,BFS)”。BFS是搜索图的最简单算法之一,也是其它一些重要的图算法的基础。

给定图G,以及开始搜索的起始顶点s。BFS搜索所有从s可到达顶点的边。而且在达到更远的距离k+1的顶点之前,BFS会找到全部距离为k的顶点。(看不懂没关系,看完后面的举例就明白了)

可以想象为以s为根,构建一棵树的过程,从顶部向下逐步增加层次。广度优先搜索能保证在增加层次之前,添加了所有兄弟节点到树中。

1. BFS算法过程

我们从fool开始搜索,从fool可以到达的顶点有foul、foil、cool、pool,完成第一轮,距离为1。然后再依次以这四个顶点为起点,寻找下一步可以到达的顶点fail、poll,完成第2轮,距离等于2。然后是第三轮……。如此反复,直到抵达目标sage为止。

在这里插入图片描述

但有些顶点之间的距离是不确定的,比如fool到pool,可以直接到达,距离为1;也可以通过cool到达,距离为2。

为了跟踪顶点的加入过程,并避免重复顶点,要为顶点增加3个属性:

  1. 距离(distance):从起始顶点到此顶点路径长度
  2. 前驱顶点(predecessor):可反向追溯到起点;
  3. 颜色(color):标识了此顶点是尚未发现(白色)、已经发现(灰色)、还是已经完成探索(黑色)。

还需要用一个队列Queue来对已发现的顶点进行排列,已经发现的放到队首,完成探索的放到队尾。以此决定下一个要探索的顶点(队首顶点)。

算法过程:

从起始顶点s开始,作为刚发现的顶点,标注为灰色,距离为0,前驱为None。将s加入队列,接下来是个循环迭代过程:

  1. 从队首取出一个顶点作为当前顶点;
  2. 遍历当前顶点的邻接顶点
  3. 如果是尚未发现的白色顶点,则将其颜色改为灰色(已发现),距离增加1,前驱顶点为当前顶点,加入到队列中;
  4. 遍历完成后,将当前顶点设置为黑色(已探索过),循环回到步骤1的队首取当前顶点。

2. python实现

def bfs(g,start):  # 参数:图,起点
  # 起点的距离设置为1
  start.setDistance(0)
  # 起点的前驱设置为None
  start.setPred(None)
  vertQueue = Queue()
  # 将起点放入队首
  vertQueue.enqueue(start)
  while (vertQueue.size() > 0):
    # 取出队列的队首元素作为当前顶点
    currentVert = vertQueue.dequeue()
    # 遍历当前顶点的邻接顶点
    for nbr in currentVert.getConnections():
      if (nbr.getColor() == 'white'):
        nbr.setColor('gray')
        nbr.setDistance(currentVert.getDistance() + 1)
        nbr.setPred(currentVert)
        vertQueue.enqueue(nbr)
    # 当前顶点探索完成,设置为黑色
    currentVert.setColor('black')

在以FOOL为起始顶点,遍历了所有顶点,并为每个顶点着色、赋距离和前驱之后。就可以通过一个回途追溯函数来确定FOOL到任何单词顶点的最短词梯

def traverse(y):  # y是目标单词
    x = y
    while (x.getPred()):
        print(x.getId())
        x = x.getPred()
    print(x.getId())

traverse(g.getVertex('sage'))

3. 算法分析

BFS算法主体是两个循环的嵌套:

  • while循环对每个顶点访问一次,所以是 O ( ∣ V ∣ ) O(|V|) O(V),V是顶点数量;

  • 而嵌套在while中的for,由于每条边只有在其起始顶点u出队的时候才会被检查一次,而每个顶点最多出队1次,所以边最多被检查1次,一共是 O ( ∣ E ∣ ) O(|E|) O(E),E是边的数量。

综合起来BFS的时间复杂度为 O ( ∣ V ∣ + ∣ E ∣ ) O(|V|+|E|)

### 计算两点间所有最短路径 为了计算两个节点间的全部最短路径,通常先利用单源最短路径算法求得从起点至终点的最短距离。之后通过回溯的方式寻找所有的最短路径组合。 #### 使用Dijkstra算法获取最短路径树并记录前驱结点 在执行标准Dijkstra算法的过程中,除了更新各顶点的距离外还需要保存每个顶点的最佳前驱节点列表。当存在多个相同最小代价到达当前处理节点的情况时,则将这些节点都加入到该位置可能的前置节点集合里去[^1]。 ```cpp // C++伪代码片段用于说明如何修改传统迪杰斯特拉算法来追踪多条路劲 vector<int> prev[n]; // 存储每一个节点可选的上一步节点们 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> pq; pq.push({0, start}); dist[start] = 0; while (!pq.empty()) { auto [d, u] = pq.top(); pq.pop(); if (visited[u]) continue; visited[u] = true; for (auto &[v, w] : adj[u]) { if (dist[v] >= d + w) { if(dist[v]>d+w){ dist[v]=d+w; pq.push({dist[v], v}); } prev[v].push_back(u); } } } ``` #### 构建所有最短路径 完成上述过程后,可以通过递归遍历`prev[]`数组构建出由起始点通往目标点的所有不同最短路线: ```python def find_all_paths(prev, end_node): paths = [] path_stack = [[end_node]] while path_stack: current_path = path_stack.pop() last_node = current_path[-1] if not prev[last_node]: paths.append(list(reversed(current_path))) for predecessor in prev[last_node]: new_path = list(current_path) new_path.append(predecessor) path_stack.append(new_path) return paths ``` 此函数接受先前建立好的`prev[]`表作为输入参数之一,并返回一个包含每一条独立最短路径(以节点序列形式表示)的结果集。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花_城

你的鼓励就是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值