06-图1 列出连通集 (25 分)

06-图1 列出连通集 (25 分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v1 v​2​ … v​k​ }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

Notes

  1. 最简单的邻接矩阵的BFS和DFS, BFS利用队列,DFS用递归

Code

#include<iostream>
#include<queue>
using namespace std;
#define MAX 10010
int a[MAX][MAX];
int Dfs_visited[MAX] = {0}, Bfs_visited[MAX] = {0};
int Qnum, Lnum;
void Bfs(void){
 int i,j;
    for(i = 0; i < Qnum; i++){
        if(Bfs_visited[i] == 0){
            queue<int> q;
            q.push(i);
            cout << "{ ";
			cout << i << " ";
			Bfs_visited[i] = 1; //访问连同子图的第一个元素
            while(q.size() > 0) {
                int temp = q.front();
                q.pop();
                for(j = 0; j < Qnum; j++) {
                    if(a[temp][j] == 1 && Bfs_visited[j] == 0){
                        cout << j << " ";
                        Bfs_visited[j] = 1;
                        q.push(j);
                    }
                }
            }
            cout << "}" << endl;
        }
    }
}
void Dfs(int i) {
	for(int j = 0; j < Qnum; j++) {
		if(a[i][j] == 1 && Dfs_visited[j] == 0){
	        cout << j << " ";
			Dfs_visited[j] = 1;
			Dfs(j);
		}
	}

}

void DfsTraverse(void) {
    for(int i = 0; i < Qnum; i++){
        if(Dfs_visited[i] == 0){
            cout << "{ ";
			cout << i << " ";
			Dfs_visited[i] = 1;  //访问连同子图的第一个元素
            Dfs(i);
            cout << "}" << endl;
        }
    }
}

int main() {
    cin >> Qnum >> Lnum;
    for(int i = 0; i < Qnum; i++){
        for(int j = 0; j < Qnum; j++){
            a[i][j] = 0;
        }
    }
    for(int K = 0; K < Lnum; K++) {
        int i, j;
        cin >> i >> j;
        a[i][j] = 1;
        a[j][i] = 1;
    }
    DfsTraverse();
    Bfs();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值