06-图1 列出连通集 (25 分)
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 … vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
Notes
- 最简单的邻接矩阵的BFS和DFS, BFS利用队列,DFS用递归
Code
#include<iostream>
#include<queue>
using namespace std;
#define MAX 10010
int a[MAX][MAX];
int Dfs_visited[MAX] = {0}, Bfs_visited[MAX] = {0};
int Qnum, Lnum;
void Bfs(void){
int i,j;
for(i = 0; i < Qnum; i++){
if(Bfs_visited[i] == 0){
queue<int> q;
q.push(i);
cout << "{ ";
cout << i << " ";
Bfs_visited[i] = 1; //访问连同子图的第一个元素
while(q.size() > 0) {
int temp = q.front();
q.pop();
for(j = 0; j < Qnum; j++) {
if(a[temp][j] == 1 && Bfs_visited[j] == 0){
cout << j << " ";
Bfs_visited[j] = 1;
q.push(j);
}
}
}
cout << "}" << endl;
}
}
}
void Dfs(int i) {
for(int j = 0; j < Qnum; j++) {
if(a[i][j] == 1 && Dfs_visited[j] == 0){
cout << j << " ";
Dfs_visited[j] = 1;
Dfs(j);
}
}
}
void DfsTraverse(void) {
for(int i = 0; i < Qnum; i++){
if(Dfs_visited[i] == 0){
cout << "{ ";
cout << i << " ";
Dfs_visited[i] = 1; //访问连同子图的第一个元素
Dfs(i);
cout << "}" << endl;
}
}
}
int main() {
cin >> Qnum >> Lnum;
for(int i = 0; i < Qnum; i++){
for(int j = 0; j < Qnum; j++){
a[i][j] = 0;
}
}
for(int K = 0; K < Lnum; K++) {
int i, j;
cin >> i >> j;
a[i][j] = 1;
a[j][i] = 1;
}
DfsTraverse();
Bfs();
return 0;
}