决策树
文章平均质量分 82
boombung
这个作者很懒,什么都没留下…
展开
-
GBDT(梯度提升树)算法概述
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)、机器学习知识点整理以及集成树知识点概括下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录概述算法步骤正则化优缺点优点缺点GBDT和[AdaBoost](https://blog.csdn.net/qq_39362284/article/details/116276266)区别GBDT和RF区别相同点不同点详细介绍参考【机器学习算法总结】GBDT机器原创 2021-04-29 21:05:10 · 1560 阅读 · 0 评论 -
AdaBoost算法概述
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)、机器学习知识点整理以及集成树知识点概括下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录基本原理损失函数二级目录三级目录详细介绍参考Adaboost入门教程——最通俗易懂的原理介绍(图文实例)和集成学习之Adaboost算法原理小结基本原理Adaboost算法基本原理就是将多个弱分类器(弱分类器一般选用单层决策树)进行合理的结合,使其成为一个原创 2021-04-29 20:37:24 · 2095 阅读 · 0 评论 -
集成树知识点概括
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)以及机器学习知识点整理下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录集成学习分类决策树随机森林AdaBoostGBDTXGBoostLightGBM集成融合方法集成学习详细介绍参考机器学习算法之Boosting。集成学习是通过训练弱干个弱学习器,并通过一定的结合策略,从而形成一个强学习器。有时也被称为多分类器系统(multi-classifi原创 2021-04-29 20:09:03 · 526 阅读 · 0 评论 -
决策树、随机森林知识点概括
本文为本人另两篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)以及机器学习知识点整理下的子内容,有需要的朋友按需自取~另:本文只是知识点的整理概括,更为详细的可以参考我每个部分给出的链接~目录决策树总结概述决策树的三种构建ID3算法C4.5算法CART树步骤分类树回归树信息增益 vs 信息增益比Gini 指数 vs 熵剪枝缺失值的处理抛弃缺失值补充缺失值概率化缺失值补充决策树算法特点优点缺点随机森林概述随机采样BootstrapBagging的生成方法Bag关系决策树原创 2021-04-29 20:06:10 · 1459 阅读 · 0 评论 -
机器学习知识点整理
本文为本人另一篇博客机器学习/计算机视觉(cv)实习面试资料整理(附字节、阿里、腾讯、美团面经)下的子内容,有需要的朋友按需自取~本文大纲参考周志华《机器学习》(西瓜书)线性回归/逻辑回归/SVM贝叶斯分类EM集成树集成决策树随机森林AdaBoostGBDTXGBoostLightGBM集成融合方法神经网络聚类降维特征选择与稀疏学习HMM...原创 2021-04-21 20:59:56 · 199 阅读 · 0 评论