线图分析法
线图分析法(chart parsing)是基于CFG规则的分析方法,首先需要了解一下什么是形式语言:形式语言
1 三种策略
线图分析法在具体的实现上有三种不同的策略,分别为:
- 自底向上(Bottom-up)
- 从上到下(Top-down)
- 从上到下和从下到上结合
对于自然语言来说,采用的更多的是自底向上策略,即给定一个句子,从句子开始推算其可能的结构,最后得到一棵树。而从上到下则是根据一个结构推算句子。
2 自底向上的线图分析法
算法的内容如下:
- 给定一组CFG规则: X P → α 1 ⋯ α n ( n ≥ 1 ) XP\rightarrow \alpha_1\cdots \alpha_n (n\ge1) XP→α1⋯αn(n≥1),这其中的 α \alpha α既可以是非终结符又可以是终结符;
- 给定一个句子的词性序列: S = W 1 W 2 ⋯ W n S=W_1W_2\cdots W_n S=W1W2⋯Wn,注意是词性序列,这意味着要做词性标注;
- 构造一个线图:线图是一组节点和边的集合;

- 建立一个二维表:记录每一条边的起始位置和终止位置。
然后执行操作:查看任意相邻几条边上的词性串是否与某条重写规则的右部相同,如果相同,则增加一条新的边跨越原来相应的边,新增加边上的标记为这条重写规则的头(左部)。重复这个过程,直到没有新的边产生。

3 数据结构
算法需要的数据结构如下:
- 线图(Chart):保存分析过程中已经建立的成分(包括终结符和非终结符)、位置(包括起点和终点)。通常以 n ∗ n n*n n∗n的数组表示( n n n为句子包含的词数)。
- 待处理表(Agenda):记录刚刚得到的一些重写规则所代表的成分,这些重写规则的右端符号串与输入词性串(或短语标志串)中的一段完全匹配,通常以栈或线性队列表示。
- 活动边集(ActiveArc):记录那些右端符号串与输入串的某一段相匹配,但还未完全匹配的重写规则,通常以数组或列表存储。
4 点规则
点规则用于表示规则右部被归约(reduce)的程度。可以理解为点的位置左边都是匹配到的规则的一部分,如果点的左边是规则右部的所有内容,那么就说明规则右边已经被完全匹配。根据点规则,可有以下两种边:
- 活性边(活动弧):规则右部未被完全匹配
- 非活性边(非活动弧,或完成弧):规则右部已被完全匹配
5 算法描述
从输入串的起始位置到最后位置,循环执行如下步骤:
- 如果待处理表(Agenda)为空,则找到下一个位置上的词,将该词对应的(所有)词类 X X X附以 ( i , j ) (i,j) (i,j)作为元素放到待处理表中,即 X ( i , j ) X(i,j) X(i,j)。其中, i , j i,j i,j分别是该词的起始位置和终止位置, j > i j\gt i j>i, j − i j-i j−i为该词的长度。
- 从Agenda中取出一个元素 X ( i , j ) X(i,j) X(i,j)。
- 对于每条规则
A
→
X
γ
A\rightarrow X\gamma
A→Xγ,将
A
→
X
∘
γ
(
i
,
j
)
A\rightarrow X\circ \gamma (i,j)
A→X∘γ(i,j)加入活动边集ActiveArc中,然后调用扩展弧子程序。
扩展弧子程序:
(a)将 X X X插入图表(Chart)的 ( i , j ) (i,j) (i,j)位置中。
(b)对于活动边集(ActiveArc)中每个位置为 ( k , i ) ( 1 ≤ k < i ) (k,i)(1\le k\lt i) (k,i)(1≤k<i)的点规则,如果该规则具有如下形式: A → α ∘ X A\rightarrow \alpha \circ X A→α∘X,如果 A = S A=S A=S,则把 S ( 1 , n + 1 ) S(1,n+1) S(1,n+1)加入到Chart中,并给出一个完整的分析结果;否则,则将 A ( k , j ) A(k,j) A(k,j)加入到Agenda表中。
(c)对于每个位置为 ( k , i ) (k,i) (k,i)的点规则: A → α ∘ X β A\rightarrow \alpha \circ X\beta A→α∘Xβ,则将 A → α X ∘ β A\rightarrow \alpha X\circ \beta A→αX∘β加入到活动边集中。
6 示例
现有规则:
S
→
N
P
V
P
V
P
→
V
N
P
N
P
→
D
e
t
N
D
e
t
→
t
h
e
N
→
b
o
y
V
→
h
i
t
N
→
d
o
g
S\rightarrow NP\ \ \ VP\\ VP\rightarrow V\ \ \ NP\\ NP\rightarrow Det\ \ \ N\\ Det\rightarrow the \\ N\rightarrow boy \\ V\rightarrow hit \\ N\rightarrow dog
S→NP VPVP→V NPNP→Det NDet→theN→boyV→hitN→dog
句子为
t
h
e
b
o
y
h
i
t
s
t
h
e
d
o
g
the\ boy\ hits\ the\ dog
the boy hits the dog。
首先进行词的形态分析,这里将
h
i
t
s
hits
hits还原为
h
i
t
hit
hit,然后根据规则进行词性标注得到
1
D
e
t
2
N
3
V
4
D
e
t
5
N
6
_1Det_2N_3V_4Det_5N_6
1Det2N3V4Det5N6,根据算法之后每一次循环的步骤如下:
-
A
g
e
n
d
a
Agenda
Agenda初始内容为空加入第一个词
D
e
t
(
1
,
2
)
Det(1,2)
Det(1,2),然后取出
D
e
t
(
1
,
2
)
Det(1,2)
Det(1,2),将
N
P
→
D
e
t
∘
N
(
1
,
2
)
NP\rightarrow Det\circ N(1,2)
NP→Det∘N(1,2)加入
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc中,将
D
e
t
(
1
,
2
)
Det(1,2)
Det(1,2)插入
C
h
a
r
t
Chart
Chart中。此时各个数据结构的内容如下:
A g e n d a : { } A c t i v e A r c : { N P → D e t ∘ N ( 1 , 2 ) } C h a r t : { ( D e t , 1 , 2 ) } Agenda: \{\} \\ ActiveArc:\{NP\rightarrow Det\circ N(1,2)\} \\ Chart:\{(Det,1,2)\} Agenda:{}ActiveArc:{NP→Det∘N(1,2)}Chart:{(Det,1,2)} -
A
g
e
n
d
a
Agenda
Agenda为空,加入第二个词
N
(
2
,
3
)
N(2,3)
N(2,3);取出
N
(
2
,
3
)
N(2,3)
N(2,3);并没有满足
A
→
N
γ
A\rightarrow N\gamma
A→Nγ的规则;将
N
(
2
,
3
)
N(2,3)
N(2,3)插入
C
h
a
r
t
Chart
Chart中,
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc中
N
P
→
D
e
t
∘
N
(
1
,
2
)
NP\rightarrow Det\circ N(1,2)
NP→Det∘N(1,2)满足条件(b),于是将
N
P
(
1
,
3
)
NP(1,3)
NP(1,3)加入
A
g
e
n
d
a
Agenda
Agenda。此时各个数据结构的内容如下:
A g e n d a : { N P ( 1 , 3 ) } A c t i v e A r c : { } C h a r t : { ( D e t , 1 , 2 ) , ( N , 2 , 3 ) } Agenda: \{NP(1,3)\} \\ ActiveArc:\{\} \\ Chart:\{(Det,1,2),(N,2,3)\} Agenda:{NP(1,3)}ActiveArc:{}Chart:{(Det,1,2),(N,2,3)} - 取出
N
P
(
1
,
3
)
NP(1,3)
NP(1,3);将
S
→
N
P
∘
V
P
(
1
,
3
)
S\rightarrow NP\circ VP(1,3)
S→NP∘VP(1,3)加入
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc;将
N
P
(
1
,
3
)
NP(1,3)
NP(1,3)插入
C
h
a
r
t
Chart
Chart。此时各个数据结构的内容如下:
A g e n d a : { } A c t i v e A r c : { S → N P ∘ V P ( 1 , 3 ) } C h a r t : { ( D e t , 1 , 2 ) , ( N , 2 , 3 ) , ( N P , 1 , 3 ) } Agenda: \{\} \\ ActiveArc:\{S\rightarrow NP\circ VP(1,3)\} \\ Chart:\{(Det,1,2),(N,2,3),(NP,1,3)\} Agenda:{}ActiveArc:{S→NP∘VP(1,3)}Chart:{(Det,1,2),(N,2,3),(NP,1,3)} -
A
g
e
n
d
a
Agenda
Agenda为空,加入第三个词
V
(
3
,
4
)
V(3,4)
V(3,4);将
V
P
→
V
∘
N
P
(
3
,
4
)
VP\rightarrow V\circ NP(3,4)
VP→V∘NP(3,4)加入
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc;将
V
(
3
,
4
)
V(3,4)
V(3,4)插入
C
h
a
r
t
Chart
Chart。此时各个数据结构的内容如下:
A g e n d a : { } A c t i v e A r c : { S → N P ∘ V P ( 1 , 3 ) , V P → V ∘ N P ( 3 , 4 ) } C h a r t : { ( D e t , 1 , 2 ) , ( N , 2 , 3 ) , ( N P , 1 , 3 ) , ( V , 3 , 4 ) } Agenda: \{\} \\ ActiveArc:\{S\rightarrow NP\circ VP(1,3),VP\rightarrow V\circ NP(3,4)\} \\ Chart:\{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4)\} Agenda:{}ActiveArc:{S→NP∘VP(1,3),VP→V∘NP(3,4)}Chart:{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4)} -
A
g
e
n
d
a
Agenda
Agenda为空,加入第四个词
D
e
t
(
4
,
5
)
Det(4,5)
Det(4,5);将
N
P
→
D
e
t
∘
N
(
4
,
5
)
NP\rightarrow Det\circ N(4,5)
NP→Det∘N(4,5)加入
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc;将
D
e
t
(
4
,
5
)
Det(4,5)
Det(4,5)插入
C
h
a
r
t
Chart
Chart中。此时各个数据结构的内容如下:
A g e n d a : { } A c t i v e A r c : { S → N P ∘ V P ( 1 , 3 ) , V P → V ∘ N P ( 3 , 4 ) , N P → D e t ∘ N ( 4 , 5 ) } C h a r t : { ( D e t , 1 , 2 ) , ( N , 2 , 3 ) , ( N P , 1 , 3 ) , ( V , 3 , 4 ) , ( D e t , 4 , 5 ) } Agenda: \{\} \\ ActiveArc:\{S\rightarrow NP\circ VP(1,3),VP\rightarrow V\circ NP(3,4),NP\rightarrow Det\circ N(4,5)\} \\ Chart:\{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5)\} Agenda:{}ActiveArc:{S→NP∘VP(1,3),VP→V∘NP(3,4),NP→Det∘N(4,5)}Chart:{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5)} -
A
g
e
n
d
a
Agenda
Agenda为空,加入第五个词
N
(
5
,
6
)
N(5,6)
N(5,6);将
N
(
5
,
6
)
N(5,6)
N(5,6)插入
C
h
a
r
t
Chart
Chart中;
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc中
N
P
→
D
e
t
∘
N
(
4
,
5
)
NP\rightarrow Det\circ N(4,5)
NP→Det∘N(4,5)满足条件(b),将
N
P
(
4
,
6
)
NP(4,6)
NP(4,6)加入
A
g
e
n
d
a
Agenda
Agenda。此时各个数据结构的内容如下:
A g e n d a : { N P ( 4 , 6 ) } A c t i v e A r c : { S → N P ∘ V P ( 1 , 3 ) , V P → V ∘ N P ( 3 , 4 ) } C h a r t : { ( D e t , 1 , 2 ) , ( N , 2 , 3 ) , ( N P , 1 , 3 ) , ( V , 3 , 4 ) , ( D e t , 4 , 5 ) , ( N , 5 , 6 ) } Agenda: \{NP(4,6)\} \\ ActiveArc:\{S\rightarrow NP\circ VP(1,3),VP\rightarrow V\circ NP(3,4)\} \\ Chart:\{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5),(N,5,6)\} Agenda:{NP(4,6)}ActiveArc:{S→NP∘VP(1,3),VP→V∘NP(3,4)}Chart:{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5),(N,5,6)} - 取出
N
P
(
4
,
6
)
NP(4,6)
NP(4,6);将
N
P
(
4
,
6
)
NP(4,6)
NP(4,6)插入
C
h
a
r
t
Chart
Chart;
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc中
V
P
→
V
∘
N
P
(
3
,
4
)
VP\rightarrow V\circ NP(3,4)
VP→V∘NP(3,4)满足条件(b),将
V
P
(
3
,
6
)
VP(3,6)
VP(3,6)加入
A
g
e
n
d
a
Agenda
Agenda。此时各个数据结构的内容如下:
A g e n d a : { V P ( 3 , 6 ) } A c t i v e A r c : { S → N P ∘ V P ( 1 , 3 ) } C h a r t : { ( D e t , 1 , 2 ) , ( N , 2 , 3 ) , ( N P , 1 , 3 ) , ( V , 3 , 4 ) , ( D e t , 4 , 5 ) , ( N , 5 , 6 ) , ( N P , 4 , 6 ) } Agenda: \{VP(3,6)\} \\ ActiveArc:\{S\rightarrow NP\circ VP(1,3)\} \\ Chart:\{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5),(N,5,6),(NP,4,6)\} Agenda:{VP(3,6)}ActiveArc:{S→NP∘VP(1,3)}Chart:{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5),(N,5,6),(NP,4,6)} - 取出
V
P
(
3
,
6
)
VP(3,6)
VP(3,6);将
V
P
(
3
,
6
)
VP(3,6)
VP(3,6)插入
C
h
a
r
t
Chart
Chart;
A
c
t
i
v
e
A
r
c
ActiveArc
ActiveArc中
S
→
N
P
∘
V
P
(
1
,
3
)
S\rightarrow NP\circ VP(1,3)
S→NP∘VP(1,3)满足条件(b),将
S
(
1
,
6
)
S(1,6)
S(1,6)加入
C
h
a
r
t
Chart
Chart。此时各个数据结构的内容如下:
A g e n d a : { } A c t i v e A r c : { } C h a r t : { ( D e t , 1 , 2 ) , ( N , 2 , 3 ) , ( N P , 1 , 3 ) , ( V , 3 , 4 ) , ( D e t , 4 , 5 ) , ( N , 5 , 6 ) , ( N P , 4 , 6 ) , ( V P , 3 , 6 ) , ( S , 1 , 6 ) } Agenda: \{\} \\ ActiveArc:\{\} \\ Chart:\{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5),(N,5,6),(NP,4,6),(VP,3,6),(S,1,6)\} Agenda:{}ActiveArc:{}Chart:{(Det,1,2),(N,2,3),(NP,1,3),(V,3,4),(Det,4,5),(N,5,6),(NP,4,6),(VP,3,6),(S,1,6)} - 到此为止,算法便退出了,根据 C h a r t Chart Chart中的内容便可绘制出线图,然后将节点变成边,边变成节点就能够绘制成分析树。
7 算法评价
优点:算法简单,容易实现,开发周期短
弱点:算法效率低,时间复杂度为
K
n
3
Kn^3
Kn3;需要高质量的规则,分析结果与规则质量密切相关;难以区分歧义结构。
参考资料:《统计自然语言处理》宗成庆