排序:
默认
按更新时间
按访问量

Spring框架学习笔记(六)-- Spring发展史

博主声明:本篇笔记来源于某视频教程,只为记录以便以后查看。Spring1.x 时代  在Spring1.x时代,都是通过xml文件配置bean,随着项目的不断扩大,需要将xml配置分放到不同的配置文件中,需要频繁的在java类和xml配置文件中切换。Spring2.x时代  随着JDK 1.5带来...

2018-06-22 17:59:54

阅读数:4

评论数:0

Spring框架学习笔记(五)-- Mybatis入门程序

      在跑通Mybatis程序后,打算做个总结,并且跟普通的使用jdbc访问数据库 对比发现:在一两次(次数少)访问的时候,可能jdbc占优势,但是一个网站开发的过程中,不可能只访问一两次,此时Mybatis的优势显示出来(访问速度快,简单操作,在搭好环境后,只需要添加配置文件)      ...

2018-04-19 10:15:14

阅读数:25

评论数:0

Spring框架学习笔记(四)-- Mybatis

Mybatis是什么MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBatis,实质上Mybatis对ibatis进行一些改进。MyBatis是一个优秀的持久层框架...

2018-03-22 12:02:48

阅读数:63

评论数:0

Spring框架学习笔记(三)-- Spring MVC

      所谓MVC,即模型-视图-控制器,是一种比较普遍使用的设计模式。它通过分离模型、视图、控制器在程序中的角色进行解耦的。通常,模型负责封装应用程序数据在视图层的展示,视图负责展示这些数据,控制器负责接收来自用户的请求,并调用后台服务来处理业务逻辑。(核心思想是将业务逻辑从界面中分离开来,...

2018-03-17 12:05:57

阅读数:59

评论数:0

Spring框架学习笔记(二)-- 两大核心思想

1.IoC(控制反转)      所谓控制反转,只要一个类将它内部状态的控制权交给其他机制来完成。就是程序中不创建对象,只在配置文件中,描述如何创建它们的方式。在代码中,不直接与对象和服务连接,在配置文件中描述哪个组件需要哪项服务。      IoC(控制反转)是目的,DI(注入依赖)实现控制反转...

2018-03-16 15:19:14

阅读数:77

评论数:0

Spring框架学习笔记(一)-- 基础

1.什么是Spring框架Spring是一种容器框架,是用于配置各种Bean,并维护各种Bean之间关系的框架。2.使用Spring框架的优势它是一种基于POJO的轻量级和最小侵入性框架。Spring框架竭力避免因自身的API而弄乱你的应用代码,做到最小侵入性。不会强迫你实现Spring规范的接口...

2018-03-15 16:52:45

阅读数:38

评论数:0

实习点滴(11)--TensorFlow快速计算“多分类问题”的混淆矩阵以及精确率、召回率、F1值、准确率

在机器学习中,我们会利用一些指标(混淆矩阵、精确率、召回率、F1值、准确率)来判断我们模型的好坏,从而改进优化模型。下面介绍如何在TensorFlow下快速计算这些指标。

2017-08-24 11:39:12

阅读数:951

评论数:1

实习点滴(10)--BiLstm+CRF介绍

在序列标注问题中,HMM和CRF是当前比较成熟的技术,但是,随着DL(深度学习)又热起来之后,RNN做序列标注的热潮也开始了。个人而言,HMM和CRF是成熟的技术,但上升空间有限;LSTM的潜力会更大一些。于是乎,开始学习BiLstm+CRF模型了。 顾名思义,这是一个双向LSTM+CRF层的模型...

2017-08-15 14:49:27

阅读数:3657

评论数:1

实习点滴(9)--LSTM是如何解决RNN中的“梯度消失”

我们都知道RNN到迭代后期会出现“梯度消失”的问题;         我们也知道LSTM是RNN的变形和改进,它解决了RNN中的“梯度消失”问题;         我们还知道LSTM的各种门(遗忘门、输入门、输出门)。         但是,我们不知道究竟LSTM是如何通过这些门解决“梯度消失”的...

2017-08-15 11:44:20

阅读数:2548

评论数:1

条件随机场专题(3)--说起CRF,不得不提的HMM

说起CRF(条件随机场),不得不提起HMM(隐马尔可夫模型),因为HMM和CRF很像。只不过HMM是生成模型,运用的是统计概率;而CRF是判别模型,运用的是生成判别函数,进行迭代求参。

2017-08-08 15:51:33

阅读数:226

评论数:0

实习点滴(8)--收敛优化方法:牛顿法、BFGS算法与L-BFGS算法

在了解CRF推导与参数估计的时候,会用到收敛优化方法去迭代求解凸优化问题,至此,总结一下我对牛顿法、BFGS算法和L-BFGS算法这三种方法的理解。

2017-08-04 11:51:56

阅读数:436

评论数:0

条件随机场专题(2)--CRF模型

CRF是一种典型的判别式模型,它是根据模板,得到相应的特征函数,再通过这些特征函数进行参数的优化计算,那么在介绍CRF模型前,就有必要先介绍判别式模型和生成式模型。

2017-08-01 17:02:29

阅读数:417

评论数:0

条件随机场专题(1)--CRF介绍

CRF(Conditional Random Field) 条件随机场是近几年自然语言处理领域常用的算法之一。

2017-07-31 15:53:24

阅读数:351

评论数:0

实习点滴(7)--《Investigating LSTM for Punctuation Prediction》论文笔记

原文地址:http://lxie.nwpu-aslp.org/papers/2016ISCSLP-XKT.pdf 本文是利用BiLstm(双向Lstm)+CRF模型,对词组间的标点符号进行预测。

2017-07-26 16:01:15

阅读数:418

评论数:3

实习点滴(6)--关于机器学习的一些有用的东西

这本是一篇论文,我在借鉴这篇论文的同时,加上自己在机器学习方面的一些感悟,总结一番。

2017-07-26 11:14:01

阅读数:381

评论数:1

实习点滴(5)--Tensorflow文档学习

学习了一段时间CRF之后,自己也将重点转移到了TensorFlow的学习上,写写博客,就当是做做笔记了。

2017-07-25 11:12:36

阅读数:279

评论数:0

实习点滴(4)--CRF算法的特征模板总结

最近工作中接触到了CRF算法以及CRF++,于是乎,去了解了关于这些的一系列的东西,打算总结总结CRF算法里的模板问题。 我们知道,深度学习(Deeplearning)是不需要特征模板的,它会自己学习里边的规律,而CRF则是需要特征模板的,所以,选择什么样的特征模板是至关重要的。

2017-07-19 11:28:53

阅读数:3056

评论数:1

实习点滴(3)--以“词性标注”为例理解CRF算法

看了CRF相关的东西好几天了,现在也过来总结总结。我本人喜欢以讲故事的方式阐述一些东西,纯理论总是很抽象,而且很容易让人失去耐心。那就以“词性标注”为切入点,去理解一下CRF(Conditional Random Field)条件随机场的算法原理(难免有不对或者不全的地方,持续更新)。

2017-07-13 09:42:27

阅读数:2492

评论数:0

实习点滴(2)--python统计ip地址出现的个数

今天,在完成任务的时候,用到了统计ip地址出现的个数,现在就做一下总结,写一个统计ip地址的函数

2017-07-12 13:19:07

阅读数:405

评论数:0

实习点滴(1)--Xshell如何运行Python中的某个函数

这是实习的这五天来第一次来到CSDN博客,想写个专题,来记录我的第一份实习所学习到的知识,声明:不涉及到公司的机密,只是记录所学到的技术。         来到公司,自然不仅仅会在自己的PC机上运行程序,还会在公司的服务器上运行,难免会用到Xshell等相关工具,现在说说如何在Xshell工具上运...

2017-07-07 10:45:25

阅读数:3340

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭