自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(45)
  • 资源 (7)
  • 收藏
  • 关注

原创 Spring框架学习笔记(七)-- Springboot + Mybatis 示例程序

        MyBatis 是一款优秀的持久层框架,它支持定制化 SQL、存储过程以及高级映射。MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解来配置和映射原生信息,将接口和 Java 的 POJOs(Plain Ordinary Java Object,普通的 Java对象)映射成数据库中的记录。(摘自百度百科)...

2018-08-05 12:29:09 227

原创 《SpringBoot实战第四版》读书笔记(四)-- SpringCloud入门

1、现阶段,单块式架构师一份代码,部署和伸缩都是基于单个单元进行的,优点在于易于部署,但是面临着可用性低、伸缩性差、集中发布的生命周期以及违反单一功能原则。这就是SpringCloud的优势所在,微服务的出现解决了这个问题。2、微服务将按照边界拆分成单个服务,体现出分布式的特征,此时每个微服务之间的通信将是我们解决的问题。基于SpringCloud开发的程序特别适合在Docker或者其他专业Paa...

2018-07-10 17:20:56 643

原创 《SpringBoot实战第四版》读书笔记(三)-- 深入Actuator

      Springboot的Actuator提供了很多生产级别的特性,比如监控和度量Springboot应用程序。Actuator的这些特性可以通过众多REST端点、远程shell和JMX获得。      1、Actuator提供了13个端点,要想启用Actuator的端点,就必须在项目中引入Actuator的起步依赖项。<dependency> <groupId&...

2018-07-10 15:03:02 181

原创 《SpringBoot实战第四版》读书笔记(二)-- 自定义配置

1、Springboot提供了两种自定义配置的方式--显式配置进行覆盖和使用属性进行精细化配置     1)显式配置进行覆盖:         在pom.xml里进行添加相关配置依赖项,重新构建应用程序后运行即可     2)使用属性进行精细化配置:         在application.yml中设置所使用的属性2、如果我们使用Thymeleaf,我们需要在src/main/resources...

2018-07-10 14:25:50 267

原创 《SpringBoot实战第四版》读书笔记(一)-- 入门

1、SpringBoot最重要的四个核心:自动配置、起步依赖、命令行界面、Actuator(Springboot提供对应用系统的自省和监控的集成功能,可以对应用系统进行配置查看、相关功能统计等)。     Springboot自动配置消除了传统Spring应用程序中的很多样板配置;     Springboot起步依赖让你能通过库所提供的功能而非名称与版本号来指定构建依赖;     Springb...

2018-07-10 12:04:33 1022

原创 Spring框架学习笔记(六)-- Spring发展史

博主声明:本篇笔记来源于某视频教程,只为记录以便以后查看。Spring1.x 时代  在Spring1.x时代,都是通过xml文件配置bean,随着项目的不断扩大,需要将xml配置分放到不同的配置文件中,需要频繁的在java类和xml配置文件中切换。Spring2.x时代  随着JDK 1.5带来的注解支持,Spring2.x可以使用注解对Bean进行申明和注入,大大的减少了xml配置...

2018-06-22 17:59:54 217

原创 Spring框架学习笔记(五)-- Mybatis入门程序

      在跑通Mybatis程序后,打算做个总结,并且跟普通的使用jdbc访问数据库 对比发现:在一两次(次数少)访问的时候,可能jdbc占优势,但是一个网站开发的过程中,不可能只访问一两次,此时Mybatis的优势显示出来(访问速度快,简单操作,在搭好环境后,只需要添加配置文件)       Mybatis入门程序步骤如下:     下载jar包,并且放在lib文件中,添加到引用中     ...

2018-04-19 10:15:14 91

原创 Spring框架学习笔记(四)-- Mybatis

Mybatis是什么MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBatis,实质上Mybatis对ibatis进行一些改进。MyBatis是一个优秀的持久层框架,它对jdbc的操作数据库的过程进行封装,使开发者只需要关注 SQL 本身,而不需要花费精力去处理例如...

2018-03-22 12:02:48 146

原创 Spring框架学习笔记(三)-- Spring MVC

      所谓MVC,即模型-视图-控制器,是一种比较普遍使用的设计模式。它通过分离模型、视图、控制器在程序中的角色进行解耦的。通常,模型负责封装应用程序数据在视图层的展示,视图负责展示这些数据,控制器负责接收来自用户的请求,并调用后台服务来处理业务逻辑。(核心思想是将业务逻辑从界面中分离开来,允许它们单独的改变而不互相影响)      所谓Spring MVC,是基于Spring实现MVC设计...

2018-03-17 12:05:57 136

原创 Spring框架学习笔记(二)-- 两大核心思想

1.IoC(控制反转)      所谓控制反转,只要一个类将它内部状态的控制权交给其他机制来完成。就是程序中不创建对象,只在配置文件中,描述如何创建它们的方式。在代码中,不直接与对象和服务连接,在配置文件中描述哪个组件需要哪项服务。      IoC(控制反转)是目的,DI(注入依赖)实现控制反转的手段。      所谓依赖注入,就是将依赖的对象的创建和服务都交给配置文件和Spring框架(若不使...

2018-03-16 15:19:14 335

原创 Spring框架学习笔记(一)-- 基础

1.什么是Spring框架Spring是一种容器框架,是用于配置各种Bean,并维护各种Bean之间关系的框架。2.使用Spring框架的优势它是一种基于POJO的轻量级和最小侵入性框架。Spring框架竭力避免因自身的API而弄乱你的应用代码,做到最小侵入性。不会强迫你实现Spring规范的接口或者继承Spring规范的类, 激发POJO的潜能。通过依赖注入和面向接口实现高内聚低耦合。Sprin...

2018-03-15 16:52:45 179

原创 实习点滴(11)--TensorFlow快速计算“多分类问题”的混淆矩阵以及精确率、召回率、F1值、准确率

在机器学习中,我们会利用一些指标(混淆矩阵、精确率、召回率、F1值、准确率)来判断我们模型的好坏,从而改进优化模型。下面介绍如何在TensorFlow下快速计算这些指标。

2017-08-24 11:39:12 8363 4

原创 实习点滴(10)--BiLstm+CRF介绍

在序列标注问题中,HMM和CRF是当前比较成熟的技术,但是,随着DL(深度学习)又热起来之后,RNN做序列标注的热潮也开始了。个人而言,HMM和CRF是成熟的技术,但上升空间有限;LSTM的潜力会更大一些。于是乎,开始学习BiLstm+CRF模型了。顾名思义,这是一个双向LSTM+CRF层的模型双向的LSTM可以得到上下文的信息在输出层后再增加CRF层,加

2017-08-15 14:49:27 6886 1

原创 实习点滴(9)--LSTM是如何解决RNN中的“梯度消失”

我们都知道RNN到迭代后期会出现“梯度消失”的问题;        我们也知道LSTM是RNN的变形和改进,它解决了RNN中的“梯度消失”问题;        我们还知道LSTM的各种门(遗忘门、输入门、输出门)。        但是,我们不知道究竟LSTM是如何通过这些门解决“梯度消失”的,反正之前我一直很含糊,现在,我们就一探究竟。

2017-08-15 11:44:20 13862 14

原创 条件随机场专题(3)--说起CRF,不得不提的HMM

说起CRF(条件随机场),不得不提起HMM(隐马尔可夫模型),因为HMM和CRF很像。只不过HMM是生成模型,运用的是统计概率;而CRF是判别模型,运用的是生成判别函数,进行迭代求参。

2017-08-08 15:51:33 475

原创 实习点滴(8)--收敛优化方法:牛顿法、BFGS算法与L-BFGS算法

在了解CRF推导与参数估计的时候,会用到收敛优化方法去迭代求解凸优化问题,至此,总结一下我对牛顿法、BFGS算法和L-BFGS算法这三种方法的理解。

2017-08-04 11:51:56 1442 1

原创 条件随机场专题(2)--CRF模型

CRF是一种典型的判别式模型,它是根据模板,得到相应的特征函数,再通过这些特征函数进行参数的优化计算,那么在介绍CRF模型前,就有必要先介绍判别式模型和生成式模型。

2017-08-01 17:02:29 660

原创 条件随机场专题(1)--CRF介绍

CRF(Conditional Random Field) 条件随机场是近几年自然语言处理领域常用的算法之一。

2017-07-31 15:53:24 620

原创 实习点滴(7)--《Investigating LSTM for Punctuation Prediction》论文笔记

原文地址:http://lxie.nwpu-aslp.org/papers/2016ISCSLP-XKT.pdf本文是利用BiLstm(双向Lstm)+CRF模型,对词组间的标点符号进行预测。

2017-07-26 16:01:15 873 5

原创 实习点滴(6)--关于机器学习的一些有用的东西

这本是一篇论文,我在借鉴这篇论文的同时,加上自己在机器学习方面的一些感悟,总结一番。

2017-07-26 11:14:01 533 1

原创 实习点滴(5)--Tensorflow文档学习

学习了一段时间CRF之后,自己也将重点转移到了TensorFlow的学习上,写写博客,就当是做做笔记了。

2017-07-25 11:12:36 446

原创 实习点滴(4)--CRF算法的特征模板总结

最近工作中接触到了CRF算法以及CRF++,于是乎,去了解了关于这些的一系列的东西,打算总结总结CRF算法里的模板问题。我们知道,深度学习(Deeplearning)是不需要特征模板的,它会自己学习里边的规律,而CRF则是需要特征模板的,所以,选择什么样的特征模板是至关重要的。

2017-07-19 11:28:53 8991 2

原创 实习点滴(3)--以“词性标注”为例理解CRF算法

看了CRF相关的东西好几天了,现在也过来总结总结。我本人喜欢以讲故事的方式阐述一些东西,纯理论总是很抽象,而且很容易让人失去耐心。那就以“词性标注”为切入点,去理解一下CRF(Conditional Random Field)条件随机场的算法原理(难免有不对或者不全的地方,持续更新)。

2017-07-13 09:42:27 5196

原创 实习点滴(2)--python统计ip地址出现的个数

今天,在完成任务的时候,用到了统计ip地址出现的个数,现在就做一下总结,写一个统计ip地址的函数

2017-07-12 13:19:07 713

原创 实习点滴(1)--Xshell如何运行Python中的某个函数

这是实习的这五天来第一次来到CSDN博客,想写个专题,来记录我的第一份实习所学习到的知识,声明:不涉及到公司的机密,只是记录所学到的技术。        来到公司,自然不仅仅会在自己的PC机上运行程序,还会在公司的服务器上运行,难免会用到Xshell等相关工具,现在说说如何在Xshell工具上运行Python中的某个函数(需要传参的哦)。

2017-07-07 10:45:25 6568

原创 自然语言处理基础(4)--数据平滑技术

所谓“数据平滑技术”,是指为了产生更准确的概率来调整最大似然估计的技术,基本思想就是提高低概率(如零概率),降低低概率,尽量使概率分布趋于平均。

2017-06-21 09:05:02 5344 1

原创 自然语言处理基础(3)--自底向上的句法分析

自底向上句法分析一般采用LR分析法,该刚发要求文法不包含移进--归约或者归约--归约冲突,由于自然语言的歧义性,不可避免的存在各种冲突,因此,自底向上分析法并不适合汉语句法分析

2017-06-20 08:41:45 691

原创 自然语言处理基础(2)--自顶向下的句法分析

一种语言的文法可以表示为一个四元组:G=,其中T为终结符集合(用来表示词类),N为非终结符集合(用来表示语法成分),P为产生式(用来表示句法规则),S为起始符,它是N的一个元素。        自顶向下的分析是从树根开始推导的,它作用于如下形式的推导:S-->z1-->z2-->...-->zn,开始的时候,这个推导只包含起始符S,并且n=0。

2017-06-19 19:36:07 629

原创 自然语言处理基础(1)--基本分词方法

基本的分词方法包括最大匹配法、最大概率法(最短加权路径法)、最少分词法、基于HMM的分词法、基于互现信息的分词方法、基于字符标注的方法和基于实例的汉语分词方法等。

2017-06-19 10:03:48 1224

原创 DeepLearning(基于caffe)实战项目(10)--Python编写网络配置文件

你一定有这样一种感受,就是当网络模型层数较少的时候,还可以接受手动写配置文件,当网络层数多了之后,就会自己写的写的就乱了,现在介绍用Python编写配置文件,不仅方便编写,而且观看也比较舒服。        以mnist的LeNet为例,直接上代码:# encoding: utf-8#!/usr/bin/python'''Created on 2017.06.12示例:Pytho

2017-06-12 22:01:41 417

原创 DeepLearning(基于caffe)优化策略(3)--调参篇

我们都知道,DeepLearning是一个非常好用的方法,纵使很多人认为DeepLearning是炼药炉,学习它的是炼药师,但不可否认的是,很多场景下,DeepLearning有着非常好的效果,比如说人脸识别等等。        DeepLearning中有着成千上万个参数(每一层都有很多的参数),调参自然而然也就成为了一个不可避免的话题。接下来,总结一下深度学习中的调参方法。     

2017-06-09 14:09:36 484

原创 人脸识别方向论文笔记(3)-- Sparsifying Neural Network Connections for Face Recognition

原文地址:

2017-06-04 09:43:26 1232 1

原创 人脸识别方向论文笔记(2)-- Latent Factor Guided Convolutonal Neural Networks for Age-Invariant Face Recognition

原文地址:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wen_Latent_Factor_Guided_CVPR_2016_paper.pdf

2017-06-03 09:46:08 1188

原创 DeepLearning(基于caffe)优化策略(2)--防拟合篇:Dropout

DeepLearning,甚至机器学习,都或多或少的会出现过拟合的现象。防止过拟合,就成为了一个大家普遍关注的话题。      过拟合的原因,大致分为这几种:数据量过小、数据有噪声、学习的网络模型更复杂(例如:本来是二次的方程,如果过于拟合成三次甚至更高,导致训练的loss特别小,测试时则不然,会比较大)。

2017-06-02 20:07:41 1990

原创 人脸识别方向论文笔记(1)-- A Light CNN for Deep Face Representation With Noisy Labels

原文地址:https://arxiv.org/pdf/1511.02683.pdf这篇论文中,创新点有两个:1.提出了一种新的激活函数Max-Feature-Map(MFM不仅能区分开噪声数据和信息数据,而且在特征选择方面起着重要的作用)2提出了三种网络(两个小网络+一个大网络:Light CNN-4、Light CNN-9、Light CNN-29)。

2017-06-01 14:55:48 8455 3

原创 DeepLearning(基于caffe)优化策略(1)--Normalization篇:BN、WN、LN

我们知道,深度学习是一种高性能的解决模式识别问题的模型算法,尤其是在计算机视觉方面,但随之而来的,对深度学习进行优化也成为了一个大家讨论的话题。这次总结的是三种深度学习的Normalization。

2017-05-31 11:01:04 1850

原创 DeepLearning(基于caffe)实战项目(9)--Python测试训练好的model

之前曾用Matlab测试训练好的model(详细见:http://blog.csdn.net/sihailongwang/article/details/72700482),现在打算用Python测试训练好的model,这里用imagenet为例。

2017-05-30 10:27:55 663

原创 DeepLearning(基于caffe)实战项目(8)--修改caffe源代码从添加loss(层)函数开始

在caffe中摸爬滚打了一个多月了,修改caffe源代码,早就想练练手了,loss层是一个比较独立的一个层,而且可以仿照caffe给的样例进行添加,难度会稍微小点。

2017-05-27 19:03:32 4045 5

原创 DeepLearning(基于caffe)实战项目(7)--从caffe结构里函数总结一览caffe

我觉得学习caffe,必须得做到会修改源码,刚开始可以不需要知道所有的函数是如何实现的,但必须得知道里边都有哪些函数,这些函数都可以干什么。用网上流行的比喻:Blobs,Layers,Nets的关系就好比,Blob是砖块,Layer是墙,net是一栋大楼。Blob:Blob是一个模板类,在内存中表示4维数组,维度从低到高为:width、height、channels(颜色通道)、num

2017-05-27 14:38:37 1095 1

原创 DeepLearning(基于caffe)实战项目(6)--探索leNet模型的真谛

到目前为止,我们训好了模型,测试了模型,也知道如何看学习曲线,那么就很好奇,通过怎么个流程,能让一幅图片转换成了一个结果(数字),接下来将一探究竟。首先,需要明确的是我们训练集是60000张32*32的图片,测试集是10000张32*32的图片。

2017-05-26 11:26:19 459

MFC应用实例

有利于新手学习!从最基础的学起,只要你稍微有点编程基础,就没问题!

2012-11-07

window7打开IIS配置

Window7系统不会安装IIS的同学看看吧!肯定有用!

2012-08-14

MFC运行机制

MFC运行机制,可以通过它了解MFC的运行机制,对了解MFC有很大的帮助

2012-08-10

mnist初始数据

mnist原数据,包括6000张分辨率为28*28的训练图片和10000张测试图片,以及相应的label标签(csv)

2017-05-23

numpy安装包

numpy1.8.0

2016-08-05

SVM机器学习测试用例

新手必备,不需要知道SVM原理,先了解SVM是如何用的,有什么问题可以留言!

2016-07-31

Arduino开发实战指南--笔记

四页Word,带你了解Arduino都有些什么(适合新手)

2016-03-25

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除