Leetcode 72.编辑距离(Edit Distance)

Leetcode 72.编辑距离

1 题目描述(Leetcode题目链接

  给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse ('h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention ('i' 替换为 'e')
enention -> exention ('n' 替换为 'x')
exention -> exection ('n' 替换为 'c')
exection -> execution (插入 'u')

2 题解

  来分析一下这个单词, w o r d 1 = h o r s e word1=horse word1=horse w o r d 2 = r o s word2=ros word2=ros
我们令 i , j i,j i,j分别指向两个单词的最后一个位置,这里 i → e , j → s i\rightarrow e, j\rightarrow s ie,js,如下图所示。
在这里插入图片描述
显然 i , j i,j i,j指向的字母不同,那么为了让字母能够相同,就有三种操作:

(1)插入: w o r d 1 word1 word1 i i i所在的位置插入一个 s s s,那么最少操作数将由 h o r s e horse horse r o ro ro产生,如下图所示。此时, i i i不变, j = j − 1 j=j-1 j=j1
在这里插入图片描述
(2)删除:将 i i i所指向的字母删除,那么最少操作数将由 h o r s hors hors r o s ros ros产生,如下图所示。此时 j j j不变, i = i − 1 i=i-1 i=i1
在这里插入图片描述
(3)替换:将 i i i所指的字母替换成 j j j所指的字母,那么最少操作数将由 h o r s hors hors r o ro ro产生,如下图所示。此时 i = i − 1 , j = j − 1 i=i-1,j=j-1 i=i1,j=j1
在这里插入图片描述
那么如果 i , j i,j i,j所指向的字母相同,那就不用做改动,将 i , j i,j i,j都左移一位就好了。

  因此定义 d p [ i ] [ j ] dp[i][j] dp[i][j]表示 w o r d 1 word1 word1的前 i i i个字母变成 w o r d 2 word2 word2的前 j j j个字母所需的最小操作次数,根据上面的分析,状态转移方程如下:
d p [ i ] [ j ] = { d p [ i − 1 ] [ j − 1 ] i f      w o r d 1 [ i ] = = w o r d 2 [ j ] 1 + m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j − 1 ] ) o t h e r w i s e dp[i][j] = \begin{cases} dp[i-1][j-1]&if\ \ \ \ word1[i] == word2[j]\\ 1 + min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1])&otherwise \end{cases} dp[i][j]={dp[i1][j1]1+min(dp[i1][j],dp[i][j1],dp[i1][j1])if    word1[i]==word2[j]otherwise
多加一行一列,便于处理空字符串的情况。

class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m, n = len(word1), len(word2)
        dp = [([0]*(n+1)) for _ in range(m+1)]
        for i in range(1, m+1):   #初始化第一列
            dp[i][0] = i
        for j in range(1, n+1):   #初始化第一行
            dp[0][j] = j
        for i in range(1, m+1):
            for j in range(1, n+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = 1 + min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1])
        return dp[m][n]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值