Leetcode 1025.除数博弈(Divisor Game)

Leetcode 1025.除数博弈

1 题目描述(Leetcode题目链接

  爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:

  • 选出任一 x,满足 0 < x < N 且 N % x == 0 。
  • 用 N - x 替换黑板上的数字 N 。

如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏。

输入:2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。
输入:3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

2 题解

  动态规划做的。定义 d p [ i ] dp[i] dp[i] N = i N=i N=i时先手是否获胜。

class Solution:
    def divisorGame(self, N: int) -> bool:
        dp = [False]*(N+1)
        dp[0] = True
        for i in range(2, N+1):
            j = 1
            while j <= math.sqrt(i):
                if i % j == 0 and not (dp[i-j] and dp[i-i//j]):
                    dp[i] = True
                    break
                j += 1
        return dp[-1]

通过奇偶判断,先手偶数必赢。

class Solution:
    def divisorGame(self, N: int) -> bool:
        return N%2 == 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值