Leetcode 1025.除数博弈
1 题目描述(Leetcode题目链接)
爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。
最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:
- 选出任一 x,满足 0 < x < N 且 N % x == 0 。
- 用 N - x 替换黑板上的数字 N 。
如果玩家无法执行这些操作,就会输掉游戏。
只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏。
输入:2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。
输入:3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。
2 题解
动态规划做的。定义 d p [ i ] dp[i] dp[i]为 N = i N=i N=i时先手是否获胜。
class Solution:
def divisorGame(self, N: int) -> bool:
dp = [False]*(N+1)
dp[0] = True
for i in range(2, N+1):
j = 1
while j <= math.sqrt(i):
if i % j == 0 and not (dp[i-j] and dp[i-i//j]):
dp[i] = True
break
j += 1
return dp[-1]
通过奇偶判断,先手偶数必赢。
class Solution:
def divisorGame(self, N: int) -> bool:
return N%2 == 0