差分序列和Stirling数

1 差分序列

1.1 差分序列定义

  设:
h 0 , h 1 , ⋯   , h n , ⋯ h_0,h_1,\cdots ,h_n,\cdots h0,h1,,hn,
是一个序列,我们定义该序列的(一阶)差分序列为:
Δ h 0 , Δ h 1 , ⋯   , Δ h n , ⋯ \Delta h_0,\Delta h_1,\cdots ,\Delta h_n,\cdots Δh0,Δh1,,Δhn,
其中:
Δ h n = h n + 1 − h n    ( n ≥ 0 ) \Delta h_n = h_{n+1} - h_n\ \ (n\ge 0) Δhn=hn+1hn  (n0)
差分序列的项是序列的相邻项的差。进一步,我们可以再得到上述差分序列的差分序列,即二阶差分序列,我们将它记为:
Δ 2 h 0 , Δ 2 h 1 , ⋯   , Δ 2 h n , ⋯ \Delta^2 h_0,\Delta^2 h_1,\cdots ,\Delta^2 h_n,\cdots Δ2h0,Δ2h1,,Δ2hn,
更一般地,我们可以通过:
Δ p h 0 , Δ p h 1 , ⋯   , Δ p h n , ⋯    ( p ≥ 1 ) \Delta^p h_0,\Delta^p h_1,\cdots ,\Delta^p h_n,\cdots \ \ (p\ge 1) Δph0,Δph1,,Δphn,  (p1)
递归地定义原序列的 p p p阶差分序列,其中:
Δ p h n = Δ ( Δ p − 1 h n ) \Delta^p h_n = \Delta (\Delta^{p-1}h_n) Δphn=Δ(Δp1hn)
所以相对来说 Δ p h n \Delta^p h_n Δphn就是 Δ p − 1 h n \Delta^{p-1}h_n Δp1hn的一阶差分序列,方便起见,我们可以定义一个序列的 0 0 0阶差分序列就是它自己,即:
Δ 0 h n = h n    ( n ≥ 0 ) \Delta^0 h_n = h_n\ \ (n\ge 0) Δ0hn=hn  (n0)

1.2 差分表

  一个序列的差分表是通过将 p = 0 , 1 , 2 ⋯ p=0,1,2\cdots p=0,1,2阶差分序列列成一行得到的,就像下面这样:
h 0          h 1          h 2          h 3          h 4 ⋯ Δ h 0       Δ h 1       Δ h 2       Δ h 3 ⋯ Δ 2 h 0     Δ 2 h 1     Δ 2 h 2 ⋯ Δ 3 h 0   Δ 3 h 1 ⋯ ⋯ h_0\ \ \ \ \ \ \ \ h_1\ \ \ \ \ \ \ \ h_2\ \ \ \ \ \ \ \ h_3\ \ \ \ \ \ \ \ h_4 \cdots \\ \Delta h_0\ \ \ \ \ \Delta h_1\ \ \ \ \ \Delta h_2\ \ \ \ \ \Delta h_3\cdots \\ \Delta^2 h_0\ \ \ \Delta^2 h_1\ \ \ \Delta^2 h_2\cdots \\ \Delta^3 h_0\ \Delta^3 h_1\cdots \\ \cdots h0        h1        h2        h3        h4Δh0     Δh1     Δh2     Δh3Δ2h0   Δ2h1   Δ2h2Δ3h0 Δ3h1

  定理1:设序列的通项是 n n n p p p次多项式,即:
h n = a p n p + a p − 1 n p − 1 + ⋯ + a 1 n + a 0     ( n ≥ 0 ) h_n = a_pn^p + a_{p-1}n^{p-1} + \cdots +a_1n + a_0\ \ \ (n\ge 0) hn=apnp+ap1np1++a1n+a0   (n0)
则对所有的 n ≥ 0 n\ge 0 n0 Δ p + 1 h = 0 \Delta^{p+1}h=0 Δp+1h=0。也就是说,差分表的第 p + 1 p+1 p+1行为 0 0 0

  证明:通过对 p p p施归纳法

  • p = 0 p=0 p=0时,则有 h n = a 0 h_n=a_0 hn=a0,从而 Δ h n = a 0 − a 0 = 0 \Delta h_n = a_0-a_0=0 Δhn=a0a0=0成立
  • p ≥ 1 p\ge 1 p1时,假设通项为 n n n p − 1 p-1 p1次多项式时定理成立,则:
    Δ h n = ( a p ( n + 1 ) p + a p − 1 ( n + 1 ) p − 1 + ⋯ a 1 ( n + 1 ) + a 0 ) − ( a p n p + a p − 1 n p − 1 + ⋯ + a 1 n + a 0 ) \Delta h_n = (a_p(n+1)^p + a_{p-1}(n+1)^{p-1} +\cdots a_1(n+1) +a_0 ) - (a_pn^p + a_{p-1}n^{p-1} + \cdots +a_1n + a_0) Δhn=(ap(n+1)p+ap1(n+1)p1+a1(n+1)+a0)(apnp+ap1np1++a1n+a0)
    根据二项式定理可知:
    a p ( n + 1 ) p − a p n p = a p ( n p + ( n 1 ) n p − 1 + ⋯ + 1 ) − a p n p = a p ( ( n 1 ) n p − 1 + ⋯ + 1 ) a_p(n+1)^p -a_pn^p = a_p(n^p + \begin{pmatrix}n\\1\end{pmatrix}n^{p-1} + \cdots + 1) - a_pn^p = a_p(\begin{pmatrix}n\\1\end{pmatrix}n^{p-1} + \cdots + 1) ap(n+1)papnp=ap(np+(n1)np1++1)apnp=ap((n1)np1++1)
    根据这个计算,我们可以断定, n p n^p np Δ h n \Delta h_n Δhn中被消去了,并且 Δ h n \Delta h_n Δhn n n n的至多 p − 1 p-1 p1次多项式,根据归纳假设:
    Δ p h n = 0    ( n ≥ 0 ) \Delta^p h_n = 0\ \ (n\ge 0) Δphn=0  (n0)
    因为 Δ p + 1 h n = Δ p ( Δ h n ) \Delta^{p+1}h_n = \Delta^p(\Delta h_n) Δp+1hn=Δp(Δhn),因此有:
    Δ p + 1 h n = 0    ( n ≥ 0 ) \Delta^{p+1} h_n = 0\ \ (n\ge 0) Δp+1hn=0  (n0)
    得证。

1.3 k k k阶差分公式

  序列 h 0 , h 1 , ⋯   , h n , ⋯ h_0,h_1,\cdots,h_n,\cdots h0,h1,,hn, k k k阶差分公式为:
Δ k h n = ∑ j = 0 k ( − 1 ) k − j ( k j ) h n + j \Delta^k h_n = \sum_{j=0}^k(-1)^{k-j}\begin{pmatrix}k\\j\end{pmatrix}h_{n+j} Δkhn=j=0k(1)kj(kj)hn+j

  证明:我们对 k k k施归纳法:

  • k = 0 k=0 k=0时,有 h n = h n h_n=h_n hn=hn成立
  • k ≥ 1 k\ge 1 k1时,假设 k k k时成立,则 k + 1 k+1 k+1时:
    Δ k + 1 h n = Δ k h n + 1 − Δ k h n = ∑ j = 0 k ( − 1 ) k − j ( k j ) h n + 1 + j − ∑ j = 0 k ( − 1 ) k − j ( k j ) h n + j = ∑ j = 1 k + 1 ( − 1 ) k − ( j − 1 ) ( k j − 1 ) h n + j − ∑ j = 0 k ( − 1 ) k − j ( k j ) h n + j = ∑ j = 1 k + 1 ( − 1 ) k − ( j − 1 ) ( k j − 1 ) h n + j + ∑ j = 0 k + 1 ( − 1 ) k − ( j − 1 ) ( k j ) h n + j = ∑ j = 1 k + 1 ( − 1 ) k + 1 − j ( ( k j − 1 ) + ( k j ) ) h n + j = ∑ j = 1 k + 1 ( − 1 ) k + 1 − j ( k + 1 j ) h n + j \begin{aligned} \Delta^{k+1}h_n = \Delta^k h_{n+1} - \Delta^k h_n &=\sum_{j=0}^k(-1)^{k-j}\begin{pmatrix}k\\j\end{pmatrix}h_{n+1+j}-\sum_{j=0}^k(-1)^{k-j}\begin{pmatrix}k\\j\end{pmatrix}h_{n+j}\\ &= \sum_{j=1}^{k+1}(-1)^{k-(j-1)}\begin{pmatrix}k\\j-1\end{pmatrix}h_{n+j}-\sum_{j=0}^k(-1)^{k-j}\begin{pmatrix}k\\j\end{pmatrix}h_{n+j}\\ &= \sum_{j=1}^{k+1}(-1)^{k-(j-1)}\begin{pmatrix}k\\j-1\end{pmatrix}h_{n+j}+\sum_{j=0}^{k+1}(-1)^{k-(j-1)}\begin{pmatrix}k\\j\end{pmatrix}h_{n+j}\\ &= \sum_{j=1}^{k+1}(-1)^{k+1-j}(\begin{pmatrix}k\\j-1\end{pmatrix}+\begin{pmatrix}k\\j\end{pmatrix})h_{n+j}\\ &= \sum_{j=1}^{k+1}(-1)^{k+1-j}\begin{pmatrix}k+1\\j\end{pmatrix}h_{n+j} \end{aligned} Δk+1hn=Δkhn+1Δkhn=j=0k(1)kj(kj)hn+1+jj=0k(1)kj(kj)hn+j=j=1k+1(1)k(j1)(kj1)hn+jj=0k(1)kj(kj)hn+j=j=1k+1(1)k(j1)(kj1)hn+j+j=0k+1(1)k(j1)(kj)hn+j=j=1k+1(1)k+1j((kj1)+(kj))hn+j=j=1k+1(1)k+1j(k+1j)hn+j
    k + 1 k+1 k+1时也成立,得证。

1.4 差分的线性性

  差分是具有线性性质的(用线性代数的语言描述,序列的集合形成一个向量空间,而 Δ \Delta Δ是这个向量空间上的线性变换),假设 g n g_n gn f n f_n fn分别是两个序列的通项,定义另一个序列为:
h n = f n + g n    ( n ≥ 0 ) h_n = f_n + g_n\ \ (n\ge 0) hn=fn+gn  (n0)
则易得:
Δ h n = Δ f n + Δ g n \Delta h_n = \Delta f_n + \Delta g_n Δhn=Δfn+Δgn
更一般地:
Δ p h n = Δ p f n + Δ p g n \Delta^p h_n = \Delta^p f_n + \Delta^p g_n Δphn=Δpfn+Δpgn
如果 c , d c,d c,d是常数,则对每个整数 p ≥ 0 p\ge 0 p0
Δ p ( c f n + d g n ) = c Δ p f n + d Δ p g n \Delta^p (cf_n+dg_n) = c\Delta^p f_n + d\Delta^p g_n Δp(cfn+dgn)=cΔpfn+dΔpgn

1.5 差分表与通项为 n n n的多项式

  根据差分表的定义,序列 h 0 , h 1 , h 2 , ⋯   , h n , ⋯ h_0, h_1,h_2,\cdots , h_n,\cdots h0,h1,h2,,hn,的差分表由它的第 0 0 0行上的元素确定。不仅如此,差分表还可以由沿左边,即第 0 0 0条对角线上的元素确定:
Δ h 0 , Δ 1 h 0 , Δ 2 h 0 , ⋯ \Delta h_0,\Delta^1 h_0,\Delta^2 h_0,\cdots Δh0,Δ1h0,Δ2h0,
这个性质是下述事实的推论:差分表(从左到右)对角线上的元素由前一条对角线上的元素确定,例如:
Δ h 1 = Δ 2 h 0 + Δ h 0 \Delta h_1 = \Delta^2 h_0 + \Delta h_0 Δh1=Δ2h0+Δh0
所以,如果差分表的第 0 0 0条对角线只包含 0 0 0,那么整个差分表就只包含 0 0 0

  下面讨论一种简单的第 0 0 0条对角线,即除去一个 1 1 1外只包含 0 0 0的对角线,比如 1 1 1在第 p p p行(从而在这个 1 1 1前面有 p p p 0 0 0),而且易知在 p + 1 p+1 p+1行及之后,所有的元素都等于 0 0 0,例如 p = 4 p=4 p=4,那么第 5 5 5行往后的行全是 0 0 0。那么问题来了,我们能否找出序列的一般项,使得它的差分表的第 0 0 0条对角线是 0 , 0 , 0 , 0 , 1 , 0 , 0 , ⋯ 0,0,0,0,1,0,0,\cdots 0,0,0,0,1,0,0,呢?我们先用第 0 0 0条对角线确定差分表的三角形部分并得到

0   0   0   0   1 0   0   0   1 0   0   1 0   1 1 0\ 0\ 0\ 0\ 1\\ 0\ 0\ 0\ 1\\ 0\ 0\ 1\\ 0\ 1\\ 1 0 0 0 0 10 0 0 10 0 10 11

因为第 5 5 5行全是 0 0 0,根据上面的定理,我们寻找一个 n n n 4 4 4次多项式 h n h_n hn。根据差分表,我们看到:
h 0 = 0 h 1 = 0 h 2 = 0 h 3 = 0 h 4 = 1 h_0 = 0\\ h_1=0\\ h_2=0\\ h_3=0\\ h_4=1 h0=0h1=0h2=0h3=0h4=1
因此如果 h n h_n hn是一个 4 4 4次多项式,那么它有根 0 , 1 , 2 , 3 0,1,2,3 0,1,2,3,因此对于某个常数 c c c有:
h n = c n ( n − 1 ) ( n − 2 ) ( n − 3 ) h_n = cn(n-1)(n-2)(n-3) hn=cn(n1)(n2)(n3)
因为 h 4 = 1 h_4=1 h4=1,所以我们可以得到:
c = 1 4 ! c = \frac{1}{4!} c=4!1
从而得到:
h n = n ( n − 1 ) ( n − 2 ) ( n − 3 ) 4 ! = ( n 4 )    ( n ≥ 0 ) h_n = \frac{n(n-1)(n-2)(n-3)}{4!}=\begin{pmatrix}n\\4\end{pmatrix}\ \ (n\ge 0) hn=4!n(n1)(n2)(n3)=(n4)  (n0)
  更一般地,同样的论述表明:
h n = n ( n − 1 ) ( n − 2 ) ⋯ ( n − p + 1 ) p ! = ( n p ) h_n = \frac{n(n-1)(n-2)\cdots(n-p+1)}{p!}=\begin{pmatrix}n\\p\end{pmatrix} hn=p!n(n1)(n2)(np+1)=(np)
n n n p p p次多项式,其差分表的第 0 0 0条对角线等于:
0 , 0 , ⋯   , 0 ⏞ p , 1 , 0 , 0 , ⋯ \overbrace{0,0,\cdots,0}^{p},1,0,0,\cdots 0,0,,0 p,1,0,0,

  根据差分的线性性和差分表第 0 0 0条对角线确定整个差分表从而确定序列本身的事实,可以得到下面定理。

  定理2:差分表的第 0 0 0条对角线等于:
c 0 , c 1 , c 2 , ⋯   , c p , 0 , 0 , 0 , ⋯     ( c p ≠ 0 ) c_0,c_1,c_2,\cdots,c_p,0,0,0,\cdots\ \ \ (c_p\ne 0) c0,c1,c2,,cp,0,0,0,   (cp=0)
的序列是满足:
h n = c 0 ( n 0 ) + c 1 ( n 1 ) + c 2 ( n 2 ) + ⋯ + c p ( n p ) (1) h_n = c_0\begin{pmatrix}n\\0\end{pmatrix}+c_1\begin{pmatrix}n\\1\end{pmatrix}+c_2\begin{pmatrix}n\\2\end{pmatrix}+\cdots+c_p\begin{pmatrix}n\\p\end{pmatrix}\tag{1} hn=c0(n0)+c1(n1)+c2(n2)++cp(np)(1)
n n n p p p次多项式。

   n n n的每一个 p p p次多项式对于选定的某些常数 c 0 , c 1 , ⋯   , c p c_0,c_1,\cdots, c_p c0,c1,,cp可以表示成 ( 1 ) (1) (1)的形式,这些常数是唯一确定的。下面来证明该命题。

  证明:根据式 ( 1 ) (1) (1)
h n = ∑ i = 0 p c i ( n i )     n = 0 , 1 , 2 , ⋯ h_n = \sum_{i=0}^p c_i\begin{pmatrix}n\\i\end{pmatrix}\ \ \ n = 0, 1, 2, \cdots hn=i=0pci(ni)   n=0,1,2,
假设有另一个常数序列 c 0 ′ , c 1 ′ , ⋯   , c p ′ c_0', c_1', \cdots, c_p' c0,c1,,cp使得:
h n = ∑ i = 0 p c i ′ ( n i )     n = 0 , 1 , 2 , ⋯ h_n = \sum_{i=0}^p c_i'\begin{pmatrix}n\\i\end{pmatrix}\ \ \ n = 0, 1, 2, \cdots hn=i=0pci(ni)   n=0,1,2,
则我们只需证明 c i = c i ′ ( 0 ≤ i ≤ p ) c_i=c_i'(0\le i\le p) ci=ci(0ip),假设这个条件不成立,定义:
r = m a x { i ∣ 0 ≤ i ≤ p , c i ≠ c i ′ } r = max\{i|0\le i\le p, c_i\ne c_i'\} r=max{i0ip,ci=ci}
r r r是两个序列中最后一个不相等的位置,则有:
0 = ∑ i = 0 r ( c i ′ − c i ) ( n i )     n = 0 , 1 , 2 , ⋯ 0=\sum_{i=0}^r (c_i'-c_i)\begin{pmatrix}n\\i\end{pmatrix}\ \ \ n = 0, 1, 2, \cdots 0=i=0r(cici)(ni)   n=0,1,2,
考虑多项式:
f ( x ) = ∑ i = 0 r ( c i ′ − c i ) ( x i ) f(x) = \sum_{i=0}^r (c_i'-c_i)\begin{pmatrix}x\\i\end{pmatrix} f(x)=i=0r(cici)(xi)
n = 0 , 1 , 2 , ⋯ n=0,1,2,\cdots n=0,1,2,都有 f ( n ) = 0 f(n)=0 f(n)=0 f ( x ) f(x) f(x)的次数为 r r r,非 0 0 0多项式有限根,这与假设矛盾。因此 c i = c i ′ c_i=c_i' ci=ci得证。

  这个方法可以用来计算通项为 n n n的多项式的任意序列的部分和,这便有了下面的定理。

  定理3:假设序列 h 0 , h 1 , h 2 , ⋯   , h n , ⋯ h_0,h_1,h_2,\cdots,h_n,\cdots h0,h1,h2,,hn,的差分表的第 0 0 0条对角线等于
c 0 , c 1 , c 2 , ⋯   , c p , 0 , 0 , ⋯ c_0,c_1,c_2,\cdots, c_p,0,0,\cdots c0,c1,c2,,cp,0,0,
则:
∑ k = 0 n h k = c 0 ( n + 1 1 ) + c 1 ( n + 1 2 ) + c 2 ( n + 1 3 ) + ⋯ + c p ( n + 1 p + 1 ) \sum_{k=0}^n h_k = c_0\begin{pmatrix}n+1\\1\end{pmatrix}+c_1\begin{pmatrix}n+1\\2\end{pmatrix}+c_2\begin{pmatrix}n+1\\3\end{pmatrix}+\cdots+c_p\begin{pmatrix}n+1\\p+1\end{pmatrix} k=0nhk=c0(n+11)+c1(n+12)+c2(n+13)++cp(n+1p+1)

2 Stirling数

2.1 第二类Stirling数

  差分表的第 0 0 0条对角线上的数字具有组合意义,设:
h n = n p h_n = n^p hn=np
h n h_n hn的差分表的第 0 0 0条对角线具有如下形式:
c ( p , 0 ) , c ( p , 1 ) , c ( p , 2 ) , ⋯   , c ( p , p ) , 0 , 0 , ⋯ c(p,0),c(p,1),c(p,2),\cdots, c(p,p),0,0,\cdots c(p,0),c(p,1),c(p,2),,c(p,p),0,0,
因此有:
n p = c ( p , 0 ) ( n 0 ) + c ( p , 1 ) ( n 1 ) + c ( p , 2 ) ( n 2 ) + ⋯ + c ( p , p ) ( n p ) (2) n^p = c(p,0)\begin{pmatrix}n\\0\end{pmatrix}+c(p,1)\begin{pmatrix}n\\1\end{pmatrix}+c(p,2)\begin{pmatrix}n\\2\end{pmatrix}+\cdots+c(p,p)\begin{pmatrix}n\\p\end{pmatrix}\tag{2} np=c(p,0)(n0)+c(p,1)(n1)+c(p,2)(n2)++c(p,p)(np)(2)
如果 p = 0 p=0 p=0 ,则 h n = 1 h_n = 1 hn=1,则 c ( 0 , 0 ) = 1 c(0,0)=1 c(0,0)=1;如果 p ≥ 1 p\ge 1 p1,则 n p n^p np有一个等于 0 0 0的常数项,所以 c ( p , 0 ) = 0 c(p,0) = 0 c(p,0)=0

  现在我们引入一个新的记号来改写 ( 2 ) (2) (2)式。设:
[ n ] k = { n ( n − 1 ) ( n − 2 ) ⋯ ( n − k + 1 ) k ≥ 1 1 k = 0 [n]_k = \begin{cases} n(n-1)(n-2)\cdots (n-k+1)&k\ge 1\\ 1&k=0 \end{cases} [n]k={n(n1)(n2)(nk+1)1k1k=0
其实这个 [ n ] k [n]_k [n]k就是 n n n个不同对象的 k k k排列数,也就是 P ( n , k ) P(n,k) P(n,k),现在用 [ n ] k [n]_k [n]k来表示更简介。注意到:
[ n ] k + 1 = ( n − k ) [ n ] k [n]_{k+1} = (n-k)[n]_k [n]k+1=(nk)[n]k
因为
( n k ) = [ n ] k k ! \begin{pmatrix}n\\k\end{pmatrix} =\frac{[n]_k}{k!} (nk)=k![n]k
从而得到:
[ n ] k = k ! ( n k ) [n]_k = k!\begin{pmatrix}n\\k\end{pmatrix} [n]k=k!(nk)
因此式 ( 2 ) (2) (2)可依此改写为:
n p = c ( p , 0 ) [ n ] 0 0 ! + c ( p , 1 ) [ n ] 1 1 ! + c ( p , 2 ) [ n ] 2 2 ! + ⋯ + c ( p , p ) [ n ] p p ! = ∑ k = 0 p c ( p , k ) k ! [ n ] k (3) n^p = c(p,0)\frac{[n]_0}{0!}+c(p,1)\frac{[n]_1}{1!}+c(p,2)\frac{[n]_2}{2!}+\cdots+c(p,p)\frac{[n]_p}{p!}=\sum_{k=0}^p\frac{c(p,k)}{k!}[n]_k\tag{3} np=c(p,0)0![n]0+c(p,1)1![n]1+c(p,2)2![n]2++c(p,p)p![n]p=k=0pk!c(p,k)[n]k(3)
现在我们引入:
S ( p , k ) = c ( p , k ) k !    ( 0 ≤ k ≤ p ) S(p,k) = \frac{c(p,k)}{k!}\ \ (0\le k\le p) S(p,k)=k!c(p,k)  (0kp)
( 3 ) (3) (3)式就变为了:
n p = S ( p , 0 ) [ n ] 0 + S ( p , 1 ) [ n ] 1 + S ( p , 2 ) [ n ] 2 + ⋯ + S ( p , p ) [ n ] p = ∑ k = 0 p S ( p , k ) [ n ] k (4) n^p = S(p,0)[n]_0+S(p,1)[n]_1+S(p,2)[n]_2+\cdots+S(p,p)[n]_p=\sum_{k=0}^pS(p,k)[n]_k\tag{4} np=S(p,0)[n]0+S(p,1)[n]1+S(p,2)[n]2++S(p,p)[n]p=k=0pS(p,k)[n]k(4)

  刚刚引入的 S ( p , k ) S(p,k) S(p,k)就叫做第二类Stirling数,根据 c ( p , 0 ) c(p,0) c(p,0)的取值,我们有:
S ( p , 0 ) = { 1 p = 0 0 p ≥ 1 S(p,0) = \begin{cases} 1&p=0\\ 0&p\ge1 \end{cases} S(p,0)={10p=0p1
由于只有 S ( p , p ) [ n ] p S(p,p)[n]_p S(p,p)[n]p n p n^p np的系数有贡献,所以:
S ( p , p ) = c ( p , p ) p ! = 1    ( p ≥ 0 ) S(p,p) = \frac{c(p,p)}{p!} = 1\ \ (p\ge 0) S(p,p)=p!c(p,p)=1  (p0)

  第二类 S t i r l i n g Stirling Stirling数是满足类帕斯卡型的递推关系的,如下定理。

  定理4:如果 1 ≤ k ≤ p − 1 1\le k\le p-1 1kp1,则:
S ( p , k ) = k S ( p − 1 , k ) + S ( p − 1 , k − 1 ) S(p,k) = kS(p-1,k) + S(p-1,k-1) S(p,k)=kS(p1,k)+S(p1,k1)

  证明:根据 ( 4 ) (4) (4)式:
n p = ∑ k = 0 p S ( p , k ) [ n ] k n^p = \sum_{k=0}^pS(p,k)[n]_k np=k=0pS(p,k)[n]k
因此
n p = n ∗ n p − 1 = n ∑ k = 0 p − 1 S ( p − 1 , k ) [ n ] k = ∑ k = 0 p − 1 S ( p − 1 , k ) ( n − k + k ) [ n ] k = ∑ k = 0 p − 1 S ( p − 1 , k ) ( n − k ) [ n ] k + ∑ k = 0 p − 1 S ( p − 1 , k ) k [ n ] k = ∑ k = 0 p − 1 S ( p − 1 , k ) [ n ] k + 1 + ∑ k = 0 p − 1 S ( p − 1 , k ) k [ n ] k = ∑ k = 1 p S ( p − 1 , k − 1 ) [ n ] k + ∑ k = 1 p − 1 S ( p − 1 , k ) k [ n ] k = S ( p − 1 , p − 1 ) [ n ] k + ∑ k = 1 p − 1 ( S ( p − 1 , k − 1 ) + k S ( p − 1 , k ) ) [ n ] k \begin{aligned} n^p = n*n^{p-1} &= n\sum_{k=0}^{p-1}S(p-1,k)[n]_k\\ &=\sum_{k=0}^{p-1}S(p-1,k)(n-k+k)[n]_k\\ &=\sum_{k=0}^{p-1}S(p-1,k)(n-k)[n]_k + \sum_{k=0}^{p-1}S(p-1,k)k[n]_k\\ &= \sum_{k=0}^{p-1}S(p-1,k)[n]_{k+1} + \sum_{k=0}^{p-1}S(p-1,k)k[n]_k\\ &=\sum_{k=1}^{p}S(p-1,k-1)[n]_{k} + \sum_{k=1}^{p-1}S(p-1,k)k[n]_k\\ &=S(p-1,p-1)[n]_k + \sum_{k=1}^{p-1}(S(p-1,k-1)+kS(p-1,k))[n]_k \end{aligned} np=nnp1=nk=0p1S(p1,k)[n]k=k=0p1S(p1,k)(nk+k)[n]k=k=0p1S(p1,k)(nk)[n]k+k=0p1S(p1,k)k[n]k=k=0p1S(p1,k)[n]k+1+k=0p1S(p1,k)k[n]k=k=1pS(p1,k1)[n]k+k=1p1S(p1,k)k[n]k=S(p1,p1)[n]k+k=1p1(S(p1,k1)+kS(p1,k))[n]k
通过系数对比,定理得证。

  我们可以构造第二类Stirling数的类帕斯卡三角形。就像下面这样,其中行表示 p p p,列表示 k k k,行列均从 0 0 0开始:

1
0   1
0   1   1
0   1   3   1
0   1   7   6   1
0   1   15  25  10  1
0   1   31  90  65  15  1
0   1   63  301 350 140 21  1
...

根据递推关系,在这个三角形中,除了它的垂直边和斜边上的项,其余每个项都是由该项的直接上方的元素乘以 k k k再加上左上方的项得到的。

  第二类Stirling数也拥有组合解释,如下定理。

  定理5:第二类Stirling数 S ( p , k ) S(p,k) S(p,k)计数的是把 p p p元素集合划分到 k k k个不可区分的盒子且没有空盒子的划分个数。

  证明:设 S ∗ ( p , k ) S^*(p,k) S(p,k)表示把 p p p元素集合划分到 k k k个不可区分的盒子且没有空盒子的划分个数,易得 S ∗ ( p , p ) = 1 S^*(p,p) = 1 S(p,p)=1,也就是每个盒子都放一个元素。而且 S ∗ ( p , 0 ) = 0 S^*(p,0) = 0 S(p,0)=0,因为不存在空盒子所以不可能有划分。假设 m m m是这 p p p个元素中的一个,我们从两个情况讨论:

  • m m m单独被划分到一个盒子时,则剩余的 p − 1 p-1 p1个元素要划分到 k − 1 k-1 k1个盒子里,数量为 S ∗ ( p − 1 , k − 1 ) S^*(p-1,k-1) S(p1,k1)
  • m m m不单独划分到一个盒子时,我们将 p − 1 p-1 p1个划分到 k k k个盒子里, m m m可以放入 k k k个盒子中的任意一个,所以有 k S ∗ ( p − 1 , k ) kS^*(p-1,k) kS(p1,k)种情况

故:
S ∗ ( p , k ) = S ∗ ( p − 1 , k − 1 ) + k S ∗ ( p − 1 , k )     ( 1 ≤ k ≤ p − 1 ) S^*(p,k) = S^*(p-1,k-1) + kS^*(p-1,k)\ \ \ (1\le k\le p-1) S(p,k)=S(p1,k1)+kS(p1,k)   (1kp1)
这正好与第二类Stirling数具有相同的递推关系。

  如果现在说要把 p p p元素集合划分到 k k k个非空可区分盒子里,记为 S # ( p , k ) S^\#(p,k) S#(p,k),那么我们再考虑一下盒子的排列即可:
S # ( p , k ) = k ! S ( p , k ) S^\#(p,k) = k!S(p,k) S#(p,k)=k!S(p,k)

  下面的定理给出了第二类Stirling数的通项公式:

  定理6:对每一个满足 0 ≤ k ≤ p 0\le k\le p 0kp的整数 k k k,都有
S # ( p , k ) = ∑ t = 0 k ( − 1 ) k ( k t ) ( k − t ) p S^\#(p,k) = \sum_{t=0}^k(-1)^k\begin{pmatrix}k\\t\end{pmatrix}(k-t)^p S#(p,k)=t=0k(1)k(kt)(kt)p
从而
S ( p , k ) = 1 k ! ∑ t = 0 k ( − 1 ) k ( k t ) ( k − t ) p S(p,k) = \frac{1}{k!}\sum_{t=0}^k(-1)^k\begin{pmatrix}k\\t\end{pmatrix}(k-t)^p S(p,k)=k!1t=0k(1)k(kt)(kt)p

  定理的证明只需要使用容斥原理即可,这就不过多展开了。

2.2 Bell数

  Bell数是将 p p p元素集合划分到非空且不可区分盒子的划分个数。这里没指定盒子数量,那么Bell数就是第二类Stirling数的三角形一行上的各项和即:
B p = S ( p , 0 ) + S ( p , 1 ) + ⋯ + S ( p , p ) B_p = S(p,0) + S(p,1) + \cdots +S(p,p) Bp=S(p,0)+S(p,1)++S(p,p)

  定理7:如果 p ≥ 1 p\ge 1 p1,则:
B p = ( p − 1 0 ) B 0 + ( p − 1 1 ) B 1 + ⋯ + ( p − 1 p − 1 ) B p − 1 B_p = \begin{pmatrix}p-1\\0\end{pmatrix}B_0 + \begin{pmatrix}p-1\\1\end{pmatrix}B_1 + \cdots +\begin{pmatrix}p-1\\p-1\end{pmatrix}B_{p-1} Bp=(p10)B0+(p11)B1++(p1p1)Bp1

  证明:我们把 { 1 , 2 , ⋯   , p } \{1,2,\cdots, p\} {1,2,,p}划分到一些非空且不可区分的盒子。包含 p p p的盒子还包含 { 1 , 2 , ⋯   , p − 1 } \{1,2,\cdots, p-1\} {1,2,,p1} X X X子集(可能为空),集合 X X X t t t个元素,其中 t t t 0 0 0 p − 1 p-1 p1的某个整数。那么我们有 ( p − 1 t ) \begin{pmatrix}p-1\\t\end{pmatrix} (p1t)中方式选择大小为 t t t的集合 X X X,并用 B p − t − 1 B_{p-t-1} Bpt1种方法把剩余的元素划分到非空且不可区分的盒子里。于是:
B p = ∑ t = 0 p − 1 ( p − 1 t ) B p − 1 − t B_p = \sum_{t=0}^{p-1}\begin{pmatrix}p-1\\t\end{pmatrix}B_{p-1-t} Bp=t=0p1(p1t)Bp1t
注意到 t t t 0 , 1 , 2 , ⋯   , p − 1 0,1,2,\cdots, p-1 0,1,2,,p1时, p − 1 − t p-1-t p1t也取这些值。因此得到:
B p = ∑ t = 0 p − 1 ( p − 1 p − 1 − t ) B t = ∑ t = 0 p − 1 ( p − 1 t ) B t B_p = \sum_{t=0}^{p-1}\begin{pmatrix}p-1\\p-1-t\end{pmatrix}B_{t} = \sum_{t=0}^{p-1}\begin{pmatrix}p-1\\t\end{pmatrix}B_{t} Bp=t=0p1(p1p1t)Bt=t=0p1(p1t)Bt

2.3 第一类Stirling数

  既然有第二类Stirling数,那就有第一类。根据前文所述,第二类Stirling数告诉了我们如何用 [ n ] 0 , [ n ] 1 , ⋯   , [ n ] p [n]_0,[n]_1,\cdots,[n]_p [n]0,[n]1,,[n]p写出 n p n^p np。而第一类Stirling数的作用正好相反,它告诉我们如何用 n 0 , n 1 , ⋯ n p n^0,n^1,\cdots n^p n0,n1,np写出 [ n ] p [n]_p [n]p,根据 [ n ] p [n]_p [n]p记号的定义我们知道:

  1. [ n ] 0 = 1 [n]_0 = 1 [n]0=1
  2. [ n ] 1 = n [n]_1 = n [n]1=n
  3. [ n ] 2 = n ( n − 1 ) = n 2 − n [n]_2 = n(n-1) = n^2 - n [n]2=n(n1)=n2n
  4. [ n ] 3 = n ( n − 1 ) ( n − 2 ) = n 3 − 3 n 2 + 2 n [n]_3 = n(n-1)(n-2) = n^3 - 3n^2+2n [n]3=n(n1)(n2)=n33n2+2n
  5. [ n ] 4 = n ( n − 1 ) ( n − 2 ) ( n − 3 ) = n 4 − 6 n 3 + 11 n 2 − 6 n [n]_4 = n(n-1)(n-2)(n-3) = n^4 - 6n^3+11n^2 - 6n [n]4=n(n1)(n2)(n3)=n46n3+11n26n

一般地,右边的乘积有 p p p个因子。将其乘开,我们就会得到含有 n n n的幂
n p , n p − 1 , ⋯   , n 0 n^p,n^{p-1},\cdots,n^0 np,np1,,n0

的多项式,其系数符号正负相间;也就是说,我们得到如下形式的表达式:
[ n ] p = s ( p , p ) n p − s ( p , p − 1 ) n p − 1 + ⋯ + ( − 1 ) p − 1 s ( p , 1 ) n 1 + ( − 1 ) p s ( p , 0 ) n 0 = ∑ k = 0 p ( − 1 ) p − k s ( p , k ) n k (5) \begin{aligned} [n]_p &= s(p,p)n^p-s(p,p-1)n^{p-1} + \cdots +(-1)^{p-1}s(p,1)n^1 + (-1)^ps(p,0)n^0\\ &=\sum_{k=0}^p(-1)^{p-k}s(p,k)n^k \tag{5} \end{aligned} [n]p=s(p,p)nps(p,p1)np1++(1)p1s(p,1)n1+(1)ps(p,0)n0=k=0p(1)pks(p,k)nk(5)
第一类Stirling数就是出现在 ( 5 ) (5) (5)式中的系数:
s ( p , k )     ( 0 ≤ k ≤ p ) s(p,k)\ \ \ (0\le k\le p) s(p,k)   (0kp)
易知:
s ( p , 0 ) = 0    ( p ≥ 1 ) s ( p , p ) = 1    ( p ≥ 0 ) s(p,0) = 0\ \ (p\ge 1)\\ s(p,p) = 1\ \ (p\ge 0) s(p,0)=0  (p1)s(p,p)=1  (p0)

  第一类和第二类Stirling数满足同样的初始条件。但是它们满足不同的递推关系。

  定理8:如果 1 ≤ k ≤ p − 1 1\le k\le p-1 1kp1,则:
s ( p , k ) = ( p − 1 ) s ( p − 1 , k ) + s ( p − 1 , k − 1 ) s(p,k) = (p-1)s(p-1,k)+s(p-1,k-1) s(p,k)=(p1)s(p1,k)+s(p1,k1)

  定理的证明与上面定理4的证明思路完全相同

  与第二类Stirling数一样,第一类Stirling数也是对某种事物的计数,如下定理。

  定理9:第一类Stirling数 s ( p , k ) s(p,k) s(p,k)计数的是把 p p p个对象排成 k k k个非空循环排列的方法数。

  证明:非空循环排列我们叫它圆圈,设 s ∗ ( p , k ) s^*(p,k) s(p,k)是把 p p p个对象排成 k k k个圆圈的方法数。于是有:
s ∗ ( p , p ) = 1    ( p ≥ 0 ) s^*(p,p) = 1\ \ (p\ge 0) s(p,p)=1  (p0)
也就是每个对象单独形成一个圆圈,我们还有:
s ∗ ( p , 0 ) = 0    ( p ≥ 1 ) s^*(p,0) = 0\ \ (p\ge 1) s(p,0)=0  (p1)
m m m p p p个对象之一,接下来分两个情况来讨论:

  • m m m单独成一个圈时,其余 p − 1 p-1 p1个对象要排成 k − 1 k-1 k1个圈,故数量为 s ∗ ( p − 1 , k − 1 ) s^*(p-1,k-1) s(p1,k1)
  • m m m不单独成一个圈时,其余 p − 1 p-1 p1个对象要排成 k k k个圈,数量为 s ∗ ( p − 1 , k ) s^*(p-1,k) s(p1,k),然后 m m m可以排在 p − 1 p-1 p1个对象的左边,故总数为 ( p − 1 ) s ∗ ( p − 1 , k ) (p-1)s^*(p-1,k) (p1)s(p1,k)

因此:
s ∗ ( p , k ) = s ∗ ( p − 1 , k − 1 ) + ( p − 1 ) s ∗ ( p − 1 , k )     ( 1 ≤ k ≤ p − 1 ) s^*(p,k) = s^*(p-1,k-1) + (p-1)s^*(p-1,k)\ \ \ (1\le k\le p-1) s(p,k)=s(p1,k1)+(p1)s(p1,k)   (1kp1)
这与第一类Stirling数的递推公式形式完全相同,得证。

参考资料

《组合数学》P169-P180

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值