组合数学之六 —— 差分序列&Stirling数

前言:好久没有学数学了
前几天loli给高一的讲课涉及到了本章内容,所以来普及一波

差分序列

基本概念

这里写图片描述
是一个序列,我们定义的(一阶)差分序列为:
这里写图片描述

很简单吧,就是我们经常使用的差分啊
但是我们在叙述ta的定义的时候,加了一个词:一阶
有一阶就有二阶,有二阶就有三阶~ p p p阶啊:
p p p阶差分序列:这里写图片描述
我们定义一个序列的0阶差分序列就是ta自己:这里写图片描述

我们可以把一个序列的0~P阶差分序列优美的写成一个倒三角,俗称差分表
这里写图片描述

∞ 例一

设序列为: h n = 2 ∗ n 2 + 3 ∗ n + 1 h_n=2*n^2+3*n+1 hn=2n2+3n+1,这个序列的差分表?

1   6   15   28   45   66   91  ...
  5   9    13   17   21   25  ...
    4    4    4    4    4   ...
      0    0    0    0   ...

在此例中,三阶差分序列全部由0组成,因此所有更高阶的差分序列都是由0组成的
现在我们支持,如果一个序列的通项是n的p次多项式,那么 (p+1)阶差分就都是0 ,这种情况下,我们可以把第一行0
后的所有0行删去

定理一

设序列的通项时n的p次多项式,即:
这里写图片描述
则对所有的这里写图片描述

上面我们提出了一个很简单的定理(证明不是很简单,这里就不呈现给大家啦)

性质一

现在假设 g n g_n gn, f n f_n fn分别是两个序列的通项,定义另一个序列如下:

h n = g n + f n ( n > = 0 ) h_n=g_n+f_n (n>=0) hn=gn+fnn>=0

这里写图片描述
更一般的,我们可以归纳出:
这里写图片描述
如果c和d是常数,则对每一个整数p>=0,有:
这里写图片描述

我们把以上的内容叫做差分的线性性质
由此可以看到,序列Hn的差分表可以通过 c c c乘以 g n g_n gn的差分表的项并用 d d d乘以 f n f_n fn的差分表的项 ,然后将相应的项相加而得

∞ 例二

g n = n 2 + n + 1 g_n=n^2+n+1 gn=n2+n+1, f n = n 2 − n − 2 f_n=n^2-n-2 fn=n2n2
g n g_n gn的差分表:

1   3   7   13   21  ...
  2   4   6    8  ...
    2   2   2  ...
      0   0  ...

f n f_n fn的差分表:

-2   -2   0   4   10  ...
   0    2   4   6  ...
     2    2   2  ...
        0   0  ...

h n = 5 n 2 − n − 4 h_n=5n^2-n-4 hn=5n2n4,则 h n h_n hn的差分表?

因为 h n = 2 g n + 3 f n = 2 ( n 2 + n + 1 ) + 3 ( n 2 − n − 2 ) = 5 n 2 − n − 4 h_n=2g_n+3f_n=2(n^2+n+1)+3(n^2-n-2)=5n^2-n-4 hn=2gn+3fn=2(n2+n+1)+3(n2n2)=5n2n4
h n h_n hn的差分表通过将第一个差分表的各项乘以2并将第二个差分表的各项乘以3然后对应相加,就可以得到结果了:

-4   0   14   38   72  ...
   4   14   24   34  ...
     10  10   10  ...
        0   0  ...

差分表的对角线

我们还是继续研究差分表:
这里写图片描述
图中,我圈出了一列数据,这些数据的下脚标都是0
这一列就是第0条对角线

定理二

差分表的第0条对角线等于
c0,c1,c2,…,cp,0,0,0,…
这样序列的通项满足:
这里写图片描述

∞ 例三

设: h n = n 3 + 3 n 2 − 2 n + 1 h_n=n^3+3n^2-2n+1 hn=n3+3n22n+1
计算差分我们得到:

1  3   17  49
  2  14  32
   12  18
     6

因为 h n h_n hn n n n的三次多项式,所以ta的差分表的第0条对角线就是:1,2,12,6,0,0,…
因此,根据定理二,hn就可以改写为:
这里写图片描述


我们为什么要用这种方式改写通项公式呢

其中一个原因就是求解部分和

这里写图片描述
其中:
这里写图片描述

这个是怎么来的呢:
这里写图片描述

因此原式可化为:
这里写图片描述

定理二

一个序列:$h_0,h_1,h_2,h_3,…,h_n,… $ 的第0条差分表的第0条对角线
c 0 , c 1 , c 2 , c 3 , . . . , c p , 0 , 0 , . . . c_0,c_1,c_2,c_3,...,c_p,0,0,... c0c1c2c3...cp00...
则:这里写图片描述

∞ 例四

求前n个正整数的4次方和

设: h n = n 4 hn=n^4 hn=n4
计算差分序列:

0   1   16   81   256
  1   15  65   175
    14  50  110
      36  60
        24

则第0条对角线就是:0,1,14,36,24,0,0,…
那么我们就有式子:
这里写图片描述


Stirling数

基本概念

之前我们简单的介绍了一下差分序列
假如我们现在有一个序列: h n = n p h_n=n^p hn=np
记ta的第0条对角线为:c(p,0),c(p,1),c(p,2),…,c(p,p),0,0,…

现在我们引入
这里写图片描述

这个叫做第二类Stirling数

(不要问ta为什么叫第二类,我为什么不先讲第一类。。。)

现在我们提出第二类 S t i r l i n g Stirling Stirling数的递推公式:

####定理三
如果 1 < = k < = p − 1 1<=k<=p-1 1<=k<=p1,则 这里写图片描述

我们先感性的理解一下:
这里写图片描述

S ( p , k ) S(p,k) S(p,k)都是这样得到的:把这一项所处行的直接上方的元素乘以k,然后再把结果加上该项的直接左边的项

这个怎么理解呢?

定理四

第二类 S t i r l i n g Stirling Stirling S ( p , k ) S(p,k) S(p,k) 计数的是把 p p p元素划分到 k k k个不可区分的盒子且没有空盒子的划分个数

证明:
首先,我们先解释在当前情况下不可区分意味着什么
说这些盒子是不可区分的,指的是我们不能说出一个盒子与另一个盒子的差异,ta们看起来是一样的
例如,如果某个盒子里装的是a,b,c,那么ta究竟在哪一个盒子并不重要
唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么

考虑将前 p p p个正整数 1 , 2 , . . . , p 1,2,...,p 12...p的集合作为要被划分的集合
把{ 1 , 2 , 3 , … , p }分到k个非空且不可区分的盒子有两种类型:

  • 那些使 p p p自己单独在一个盒子的划分
  • 那些使 p p p不单独在一个盒子的划分,这样包含 p p p的盒子就至少还包含一个元素

在第一种划分中,我们把 p p p单独拿出来放在一个盒子里,
因为盒子都不可区分,所以 p p p放在哪一个盒子里并不重要
那么就将 { 1 , 2 , 3 , … , p-1 } 分到 k − 1 k-1 k1个盒子中
这就贡献了 S ( p − 1 , k − 1 ) S(p-1,k-1) S(p1,k1)种方案

在第二种划分中,我们把 p p p单独拿出来,由于 p p p不单独在盒子里,
因此就得到将 { 1 , 2 , 3 , … , p-1 } 分到 k k k个盒子中
大家可能认为,这样就贡献了 S ( p − 1 , k ) S(p-1,k) S(p1,k)种方案

不然

由于 p p p的删除而产生的 { 1 , 2 , 3 , … , p-1 } 的划分 A 1 , A 2 , A 3 , . . . , A k A_1,A_2,A_3,...,A_k A1,A2,A3,...,Ak产生于 { 1 , 2 , 3 , … , p } 的k个划分,即产生于:
A 1 ∪ p , A 2 , . . . , A k A_1∪{p},A_2,...,A_k A1pA2...Ak
A 1 , A 2 ∪ p , . . . , A k A_1,A_2∪{p},...,A_k A1A2p...Ak
. . . ... ...
A 1 , A 2 , . . . , A k ∪ p A_1,A_2,...,A_k∪{p} A1A2...Akp
换句话说,在删除 p p p之后,我们无法告知ta来自于哪个盒子
p p p取走后所有的盒子仍然是非空的,因此这个盒子可能是k个盒子中的任何一个
因此第二种划分就贡献了 k S ( p − 1 , k ) kS(p-1,k) kS(p1,k)种方案

原式得证


博主这个死鬼,为什么不介绍第一类 S t i r l i n g Stirling Stirling数???

那我们就给出第一类Stirling数的递推式

定理六

如果1<=k<=p-1,则
s ( p , k ) = ( p − 1 ) s ( p − 1 , k ) + s ( p − 1 , k − 1 ) s(p,k)=(p-1)s(p-1,k)+s(p-1,k-1) s(p,k)=(p1)s(p1,k)+s(p1,k1)

至于ta的组合意义有一点难理解

定理五

第一类 S t i r l i n g Stirling Stirling s ( p , k ) s(p,k) s(p,k)计数的是把p个对象排成k个非空循环序列的方法数

我们可以把定理叙述中的循环排列叫做圆圈

©️2020 CSDN 皮肤主题: 撸撸猫 设计师:设计师小姐姐 返回首页