组合数学之差分序列与Stirling数

8.2 差分序列与Stirling数

类型模型
p个物品,k个不可区分,没有空盒子第二类stirling数 S ( p , k ) S(p,k) S(p,k)
p个物品,k个可区分,无空盒 k ! S ( p , k ) k!S(p,k) k!S(p,k)
p个物品,k个不可区分,可有空盒子Bell数
p个物品,k个可区分,可有空盒子 k p k_{p} kp
p个物品,k个不可区分,非空循环排列第一类Stirling数

回顾:差分序列(递归定义)差分表

性质: 差分表由第0行上元素的值决定;由第0条对角线决定;线性性

特殊差分表: 除一个1其余未0。 h n = ( n p ) h_n = \tbinom{n}{p} hn=(pn) + 线性性

h 0 = 0 ,   h 1 = 0 ,   h 2 = 0 ,   h 3 = 0 ,   h 4 = 1 h_0=0,\ h_1=0,\ h_2=0,\ h_3=0,\ h_4 = 1 h0=0, h1=0, h2=0, h3=0, h4=1所以0,1,2,3是 h n h_n hn的根。 h n = c n ( n − 1 ) ( n − 2 ) ( n − 3 ) h_n=cn(n-1)(n-2)(n-3) hn=cn(n1)(n2)(n3)

再由 h 4 = 1 = c n ( n − 1 ) ( n − 2 ) ( n − 3 ) h_4 = 1=cn(n-1)(n-2)(n-3) h4=1=cn(n1)(n2)(n3) c = 1 4 ! c=\frac{1}{4!} c=4!1

定理2: h n = c 0 ( n 0 ) + c 1 ( n 1 ) + . . . + c p ( n p ) h_n=c_0 \tbinom{n}{0} + c_1 \tbinom{n}{1} + ... + c_p \tbinom{n}{p} hn=c0(0n)+c1(1n)+...+cp(pn)

定理3: ∑ k = 0 n = c 0 ( n + 1 1 ) + c 1 ( n + 1 2 ) + . . . + c p ( n + 1 p + 1 ) \sum_{k=0}^n= c_0 \tbinom{n+1}{1}+c_1 \tbinom{n+1}{2} + ... + c_p \tbinom{n+1}{p+1} k=0n=c0(1n+1)+c1(2n+1)+...+cp(p+1n+1)

【考点】:给出 h n h_n hn的一个通项,写出另一个通项

一、第二类Stirling数

c ( p , p ) = p ! c(p,p)=p! c(p,p)=p!

n p = S ( p , 0 ) [ n ] 0 + S ( p , 1 ) [ n ] 1 + . . . + S ( p , p ) [ n ] p = ∑ k = 0 p S ( p , k ) [ n ] k n^p=S(p,0)[n]_{0}+ S(p,1) [n]_{1} + ... + S(p,p)[n]_{p}=\sum_{k=0}^{p}S(p,k)[n]_{k} np=S(p,0)[n]0+S(p,1)[n]1+...+S(p,p)[n]p=k=0pS(p,k)[n]k

S ( p , 0 ) = { 1 p = 0 0 p ≥ 1 S(p,0)=\left\{ \begin{array}{rcl} 1 & & {p=0}\\ 0 & & {p \ge 1}\\ \end{array} \right. S(p,0)={10p=0p1

定理4: 如果 1 ≤ k ≤ p − 1 1\le k \le p-1 1kp1,则 S ( p , k ) = k S ( p − 1 , k ) + S ( p − 1 , k − 1 ) S(p,k) = kS(p-1,k)+S(p-1,k-1) S(p,k)=kS(p1,k)+S(p1,k1)

计算: S ( p , 1 ) = 1 ( p ≥ 1 ) , S ( p , 2 ) = 2 p − 1 − 1 ( p ≥ 2 ) S(p,1)=1(p \ge 1), S(p,2) = 2^{p-1}-1(p\ge 2) S(p,1)=1(p1),S(p,2)=2p11(p2)

定理5: S ( p , k ) S(p,k) S(p,k)p个物品划分k个不可区分的盒子且没有空盒子的划分个数。

【扩】:盒子可区分

S # ( p , k ) = k ! S ( p , k ) S^{\#}(p,k)=k!S(p,k) S#(p,k)=k!S(p,k)

定理6: 0 ≤ k ≤ p 0 \le k \le p 0kp S # ( p , k ) = ∑ t = 0 k ( − 1 ) k ( k t ) ( k − t ) p S^{\#}(p,k) = \sum_{t=0}^{k}(-1)^k \tbinom{k}{t}(k-t)^{p} S#(p,k)=t=0k(1)k(tk)(kt)p(每个都非空)

二、Bell数

p个元素集合分成非空(、不可区分的盒子 B p = S ( p , 0 ) + S ( p , 1 ) + . . . + S ( p , p ) B_p = S(p,0)+S(p,1)+...+S(p,p) Bp=S(p,0)+S(p,1)+...+S(p,p)

定理7: p ≥ 1 p\ge 1 p1 B p = ( p − 1 0 ) B 0 + ( p − 1 1 ) B 1 + . . . + ( p − 1 p − 1 ) B p − 1 B_{p}=\tbinom{p-1}{0}B_{0}+\tbinom{p-1}{1}B_{1}+...+\tbinom{p-1}{p-1}B_{p-1} Bp=(0p1)B0+(1p1)B1+...+(p1p1)Bp1

三、第一类Stirling数

[ n ] p = s ( p , p ) n p − s ( p , p − 1 ) n p − 1 + . . . + ( − 1 ) p − 1 s ( p , 1 ) n + ( − 1 ) p s ( p , 0 ) n 0 = ∑ k = 0 p ( − 1 ) p − k s ( p , k ) n k [n]_{p}=s(p,p)n^{p} - s(p,p-1)n^{p-1}+...+(-1)^{p-1}s(p,1)n+(-1)^{p}s(p,0)n^{0}=\sum_{k=0}^{p}(-1)^{p-k}s(p,k)n^{k} [n]p=s(p,p)nps(p,p1)np1+...+(1)p1s(p,1)n+(1)ps(p,0)n0=k=0p(1)pks(p,k)nk

定理8: 1 ≤ k ≤ p − 1 1 \le k \le p-1 1kp1, s ( p , k ) = ( p − 1 ) s ( p − 1 , k ) + s ( p − 1 , k − 1 ) s(p,k) = (p-1)s(p-1,k)+s(p-1,k-1) s(p,k)=(p1)s(p1,k)+s(p1,k1)

与第二类Stirling数初值一样但是递推关系不同 S ( p , k ) = k S ( p − 1 , k ) + S ( p − 1 , k − 1 ) S(p,k)=kS(p-1,k)+S(p-1,k-1) S(p,k)=kS(p1,k)+S(p1,k1)

定理9: p个物品排成k个非空的循环排列

证:把p放到1…p-1任何一个物品左边 (p-1)s(p-1,k)

p个球k个盒是否空方案个数
无区别有区别有空盒p个有区别的元素取k个允许重复排列数 ( p + k − 1 p ) \tbinom{p+k-1}{p} (pp+k1) x 1 + . . . + x k = p x_{1}+...+x_{k}=p x1+...+xk=p p个球分成k组,可以有空,插k-1个板子
有区别无空盒先取k个球每盒一个,余下的p-k个无区别的球放入k个盒子中 ( p − 1 k − 1 ) \tbinom{p-1}{k-1} (k1p1) x 1 + . . . + x k = p , x k ≥ 1 x_{1}+...+x_{k}=p,x_{k}\ge 1 x1+...+xk=p,xk1
无区别有空盒 G ( x ) = 1 ( 1 − x ) ( 1 − x 2 ) . . . ( 1 − x k ) G(x)=\frac{1}{(1-x)(1-x^{2})...(1-x^{k})} G(x)=(1x)(1x2)...(1xk)1
无区别无空盒 G ( x ) = x k ( 1 − x ) ( 1 − x 2 ) . . . ( 1 − x k ) G(x)=\frac{x_{k}}{(1-x)(1-x^{2} )...(1-x^{k})} G(x)=(1x)(1x2)...(1xk)xk

这就引出了8.3节——分拆数

8.3 分拆数

当物a品是不可区分的,但盒子是不同的时候,这就相当于 x 1 + x 2 + . . . + x k = p x_{1} +x_{2}+...+x_{k}=p x1+x2+...+xk=p 代数问题。当可为空时 x i ≥ 0 x_{i}\ge 0 xi0,如果不能为空 x i ≥ 1 x_{i}\ge 1 xi1。√解决了

但如果盒子也是相同的,这就相当于区别仅在于划分出来的每组个数。==>整数拆分

讨论对n进行两种拆分的组合计数问题:(1)无限制地拆分(2)限制拆分块数量的拆分

n = n a n + ( n − 1 ) a n − 1 + . . . + 2 a 2 + a 1 n = na_{n} + (n-1)a_{n-1} + ...+2a_{2}+a_{1} n=nan+(n1)an1+...+2a2+a1

n的分拆记作: λ = n a n . . . 2 a 2 1 a 1 \lambda = n^{a_{n}} ...2^{a_{2}}1^{a_{1}} λ=nan...2a21a1

定理1: n分拆数 p n k p_{n}^{k} pnk满足下列递推关系: ∑ j = 1 k p n j = p n + k k , p n 1 = p n n = 1 \sum_{j=1}^{k}p_{n}^{j}=p_{n+k}^{k}, p_{n}^{1}=p_{n}^{n}=1 j=1kpnj=pn+kk,pn1=pnn=1

定理2: 设n和r是正整数且 r ≤ n r\le n rn。设 p n ( r ) p_n(r) pn(r)是最大部分为r的n的分拆数量,并设 q n ( r ) q_n(r) qn(r)是满足分拆各部分不大于r的n-r的分拆数量,则 p n ( r ) = q n ( r ) p_n(r)=q_n(r) pn(r)=qn(r)

分拆的几何图示:Ferrers图

定理3: p n s p_{n}^{s} pns等于n的自共轭分拆数,而 p n t p_{n}^{t} pnt等于分拆成互不相同的若干奇数和的分拆数,则有 p n s = p n t p_{n}^{s}=p_{n}^{t} pns=pnt

定理4: p n o p_{n}^{o} pno把n分成奇数和的分拆数, p n d p_{n}^{d} pnd是把n分成不同部分的分拆个数,则 p n o = p n d p_{n}^{o}=p_{n}^{d} pno=pnd

【考点】: 计算分拆数利用生成函数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Stirling插值积分是一种值积分方法,用于近似计算函的积分值。在Matlab中,可以通过以下步骤实现Stirling插值积分: 1. 首先,定义需要积分的函。假设我们要计算函 f(x) 的积分,可以在Matlab中定义一个函句柄,例如:f = @(x) x.^2; 2. 然后,确定积分区间的起始点 a 和终点 b,并指定插值节点的个 n。 3. 接下来,根据Stirling插值公式计算插值节点的 x 值和对应的 f(x) 值。可以使用 linspace 函生成等间距的插值节点,例如:x_nodes = linspace(a, b, n); 然后通过 f(x_nodes) 计算对应的 f(x) 值。 4. 利用Stirling插值公式计算积分近似值。Stirling插值积分公式如下: integral_value = h/6 * (f(a) + 4*sum(f(x_nodes(2:end-1))) + f(b)); 其中,h = (b-a)/(n-1) 是插值节点之间的间距。 5. 最后,输出近似的积分值 integral_value。 以下是一个完整的Matlab代码示例: ```matlab f = @(x) x.^2; % 定义需要积分的函 a = 0; % 积分起始点 b = 1; % 积分终点 n = 5; % 插值节点个 x_nodes = linspace(a, b, n); % 生成插值节点 f_values = f(x_nodes); % 计算插值节点对应的函值 h = (b - a) / (n - 1); % 插值节点间距 integral_value = h / 6 * (f(a) + 4 * sum(f_values(2:end-1)) + f(b)); % Stirling插值积分公式 disp(integral_value); % 输出积分近似值 ``` 请注意,这只是Stirling插值积分的一种实现方式,具体的实现方法还可以根据需要进行调整和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值