KMP算法之从懵逼到入门

写本文的目的:

1.加深自己的理解,以便自己日后复习

2.给看到此文的人一点启发

KMP算法看懂了就觉得特别简单,思路也好理解,但是看不懂之前,查各种资料看大佬的博客,都很懵逼......

1.  算法过程解释

 

首先,字符串"BBCABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

 

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

 

 

接着比较字符串和搜索词的下一个字符,还是相同。

 

 

直到字符串有一个字符,与搜索词对应的字符不相同为止。

 

 

这时,最自然的反应是,将搜索词整体后移一位,即从上图B处再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把搜索的初始位置移到已经比较过的位置,重比一遍。

 

 

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,此时不只移动一位,移动数是已经比较的字符数 - 最后一个匹配字符所对应的部分匹配值,这个部分匹配值实质上就是字符串头部和尾部重复部分的最大长度。因此就有了部分匹配值数组:

 

 

 

 

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此向后移动的位数为已匹配的字符数减去对应的部分匹配值,即6-2=4。

 

 

因为空格与C不匹配,搜索词还要继续往后移。这时已匹配的字符数为2("AB"),最后一个匹配字符B对应的"部分匹配值"为0。所以,移动位数为 2,于是将搜索词向后移2位。

 

 

因为空格与A不匹配,继续后移一位。

 

 

逐位比较,直到发现C与D不匹配。于是,移动位数为 6 - 2,继续将搜索词向后移动4位。

 

 

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果需要找出全部的匹配,移动位数为7 - 0,再将搜索词向后移动7位,剩下的操作就重复了。

首先,要了解两个概念:前缀和后缀。

"前缀"指除了最后一个字符以外,一个字符串的全部头部组合;

"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

 

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例:

 


 

  1. "A"的前缀和后缀都为空集,共有元素的长度为0;  
  2. "AB"的前缀为[A],后缀为[B],共有元素的长度为0;  
  3. "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;  
  4. "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;  
  5. "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;  
  6. "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;  
  7. "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。  

KMP算法的核心思想(个人理解):根据子串确定每次匹配失败的时候主串开始比较位向前移动的位数,位数=已经比较的字符数 - 最后一个匹配字符所对应的部分匹配值,这个就是KMP和暴力匹配算法的根本区别

#include <stdio.h>
#include <stdlib.h>
#include<string.h>
void getnext(char a[],int l,int next[])
{
    //a字符串数组为子串,l为字符串a的长度,next为a的匹配值数组
    int j;
    int k=0;
    next[0]=0;//初始化
    j=1;
    while(j<=l-1)
    {
        if(k==0)//a[0]和a[x]比较
        {
        if(a[k]==a[j])
        {

            k++;//k向后移动一位
            next[j]=k;
            j++;
        }else
        {
            //k不动
            next[j]=k;
            j++;
        }
        }
        if(k!=0)//k此时不在a[0]的位置上
        {
         if(a[k]==a[j])
         {
             k++;//k后移一位
             next[j]=k;
             j++;//j后移一位
         }
         else
         {
             k=0;//k重新回到a[0]
         }
        }
    }
}
void KMP(char str[],char a[])
{
    int L=strlen(str);//字符串长度
    int l=strlen(a);
    int i,j;
    i=j=0;
    int next[l];
    getnext(a,l,next);//活动匹配值数组
    int sum=1;//匹配成功的次数
    while(i<=L&&j<=l)
    {
        if(str[i]==a[j]&&j==0)//匹配中的四种情况
        {
            i++;
            j++;
        }else if(str[i]==a[j]&&j!=0)
        {
           i++;
           j++;
        }else if(str[i]!=a[j]&&j==0)
        {
            j=0;
            i++;
        }else if(str[i]!=a[j]&&j!=0)
        {
            int s=j-next[j-1];
            i=i-j+s;
            j=0;
        }
        if(j==l)//匹配成功的条件
        {
            printf("第%d此成功匹配的位置为:%d\n",sum,i-l);
            sum++;
        }
    }

}
int main()
{
   char str[100],a[100];
   gets(str);
   gets(a);
   KMP(str,a);
   return 0;
}

 参考:

http://blog.csdn.net/seu_calvin/article/details/62232825

http://blog.csdn.net/starstar1992/article/details/54913261

不足错误之处欢迎拍砖!!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值