题目链接:
http://poj.org/problem?id=3356
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 13855 | Accepted: 5263 |
Description
Let x and y be two strings over some finite alphabet A. We would like to transform x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
Illustration
A G T A A G T * A G G C
| | | | | | |
A G T * C * T G A C G CDeletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C
| | | | | | |
A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in x is m and the number of letters in y is n where n ≥ m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string x into a string y.
Sample Input
10 AGTCTGACGC 11 AGTAAGTAGGC
Sample Output
4
Source
#include<cstring> #include<cstdio> #include<string> #include<iostream> #include<algorithm> #define max_v 1005 using namespace std; char x[max_v],y[max_v]; int dp[max_v][max_v]; int l1,l2; int main() { while(~scanf("%d %s",&l1,x)) { scanf("%d %s",&l2,y); memset(dp,0,sizeof(dp)); for(int i=1; i<=l1; i++) { for(int j=1; j<=l2; j++) { if(x[i-1]==y[j-1]) { dp[i][j]=dp[i-1][j-1]+1; } else { dp[i][j]=max(dp[i-1][j],dp[i][j-1]); } } } int t=l1; if(l2>l1) t=l2; printf("%d\n",t-dp[l1][l2]); } return 0; }