笔记
傅里叶不积分1
这个作者很懒,什么都没留下…
展开
-
论文笔记:Bag of Tricks for Image Classification with Convolutional Neural Networks and a new ResNet.
Bag of Tricks for Image Classification with Convolutional Neural Networks and a new ResNet笔记.My Github:(https://github.com/Linchunhui/Tricks-and-new-ResNet)A new ResNet-D is here.And here is the pa...翻译 2019-07-18 23:14:19 · 783 阅读 · 1 评论 -
目标检测系列:Soft-NMS、A Fast-RCNN
Soft-NMSA Fast-RCNN Soft-NMS动机在目标检测中候选框的提取(含有根据前景/背景二分类的置信度得分),无论是传统方法例如滑动窗口,又或者是深度学习基于神经网络的RPN(区域提取网络)的方法,所提出来的候选框,相邻的候选框通常都有着相关的分数,因此会有很多相似的但是位置不那么精确的候选框,增加了检测的误检率。于是在目标检测的过程中,都会增加NMS(非极大值抑制...原创 2019-07-31 22:34:38 · 776 阅读 · 0 评论 -
CNN经典网络:LeNet、AlexNet、NIN、VGG
前言LeNetAlexNetNINVGG 前言之前刚开始接触CNN的时候导师让我写过综述,就把一些经典的CNN网络整理一下。LeNetCNN的开山之作,是LeCun在98年解决手写是数字识别任务时提出的,从那时起CNN的基本架构就定下来了:卷积、池化、全连接层。网络结构如图 3.1 所示,最早的 LeNet 有 7 层网络,包括 3 个卷积层, 2 个池化层,2...原创 2019-07-27 14:49:44 · 877 阅读 · 0 评论 -
CNN经典网络:Inception系列
前言InceptionV1InceptionV2InceptionV3InceptionV4 InceptionV1论文:https://arxiv.org/pdf/1409.4842.pdf代码:参考Tensorflow/slim特点用多个尺度的卷积核组合来获得不同大小的感受野,最后拼接成不同尺度的融合,来近似局部最优的结构;如图 3.7 所示,卷积核大小分...原创 2019-07-27 16:45:35 · 973 阅读 · 0 评论 -
CNN经典网络:ResNet系列
前言ResNetV1ResNetV2 ResNetV1论文:https://arxiv.org/pdf/1512.03385v1.pdf代码:参考Tensorflow/slim特点第一次提出残差结构,主要解决两个问题梯度消失随着网络深度增加,性能没有提升反而有所下降如下图,本来要学习H(x),现在转换为F(x)+x,二者效果相同,但是优化难度下降,并且因为多了一个x...原创 2019-07-27 17:11:23 · 417 阅读 · 0 评论 -
CNN经典网络:DenseNet、SENet
DenseNetSENet DenseNet论文:https://arxiv.org/pdf/1608.06993.pdf代码: Tensorflow/slim特点densenet紧接着在resnet之后提出,结合了resnet的思想。网络改进除了像resnet和inception在深度和宽度上做文章外,densenet通过利用feature来减少参数的同时提高效果,对feat...原创 2019-07-27 17:43:41 · 1855 阅读 · 0 评论 -
论文笔记集锦
PaperSome note about paperCNNAlexNet CNN经典网络:LeNet、AlexNet、NIN、VGGNIN CNN经典网络:LeNet、AlexNet、NIN、VGGVGG CNN经典网络:LeNet、AlexNet、NIN、VGGInceptionV1 CNN经典网络:Inception系列InceptionV2 CNN经典网络:Ince...原创 2019-08-05 20:50:40 · 279 阅读 · 0 评论 -
目标检测系列:高分辨率表示HRNetV1、HRNetV2/V2p
Index摘要现有的方法HRNet并行子网结构多尺度融合应用论文1:https://arxiv.org/abs/1904.04514论文2:https://arxiv.org/abs/1902.09212代码:https://github.com/HRNet摘要这两篇文章主要讲的就是如何在人体姿态估计,目标检测,语义分割等情况下保持高分辨的特征表示。目前多数方法...原创 2019-08-05 21:35:09 · 3101 阅读 · 0 评论 -
目标检测系列:Libra R-CNN
Index动机方法 IOU-balanced SamplingBalanced Feature PyramidBalanced L1 loss结果论文:https://arxiv.org/abs/1904.02701v1代码:https://github.com/open-mmlab/mmdetection动机无论是二阶段还是一阶段的目标检测算法无外乎就是三个部分...原创 2019-08-05 22:07:28 · 984 阅读 · 0 评论 -
轻量级网络:MixNet
Index摘要动机方法MDConvMDConv设计MDConv on MobileNets消融实验MixNet结论论文:https://arxiv.org/abs/1907.09595代码:https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet/mixnet摘要谷歌新出的一篇...原创 2019-08-01 17:26:15 · 1835 阅读 · 0 评论 -
目标检测系列:GIOU-Generalized Intersection over Union
Index动机方法GIOU定义GIOU算法结果论文:https://arxiv.org/abs/1902.09630代码:https://github.com/generalized-iou下班前看了下这篇论文,感觉并不难理解,有时间去试一下。动机这篇文章主要从损失函数出发,来改进目标检测的算法。目前目标检测中主流的边界框优化采用的都是BBox的回归损失(MSE...原创 2019-08-05 22:41:11 · 518 阅读 · 0 评论 -
目标检测系列:SSD系列SSD、FSSD、DSSD、DSOD
SSDDSSDFSSDDSOD SSD动机目前目标检测的一些算法包括基于深度学习的,都是先假定一些候选框,接着对候选框内容进行特征提取再分类,然后再对边框的位置进行修正这一系列的计算,最典型的例如Faster RCNN,虽然准确,但是计算太过于密集,即使是在高端的硬件上,检测的速度也非常慢,难以达到实时检测的要求。而另一种基于回归的方法例如YOLO算法,虽然达到了实时的要求,...原创 2019-07-31 22:12:10 · 5477 阅读 · 0 评论 -
目标检测:YOLO系列v1、v2、v3
YOLOYOLOv2YOLOv3 YOLO动机人类对于物体只需要看一眼就能知道该物体是什么,在什么位置,人类的视觉系统是非常快速而准确的,因此如果能够加速算法使得计算机系统也能够快速而准确的话,就能够代替人而实现无人驾驶。而目前的一些方法,RCNN系列的都是一套复杂的流程,首先生成一些可能的边框区域,再对边框进行分类,之后再修正边框的位置,然后再对其他的边框再进行处理,这个过程...原创 2019-07-31 21:58:28 · 650 阅读 · 0 评论 -
轻量级网络:MobileNet系列V1、V2、V3
前言MobileNetV1MobileNetV2MobileNetV3 前言在公司实习正好接触的是移动端的相关业务,于是对于轻量级网络也有了一定的了解,就先来总结一下MobileNet系列。MobileNetV1论文:https://arxiv.org/abs/1704.04861?context=csTensorFlow实现:https://github.com/Lin...原创 2019-07-23 20:54:34 · 6191 阅读 · 0 评论 -
轻量级网络:SqueezeNet、Xception
前言SqueezeNetXception 前言继续来总结一下轻量级网络SqueezeNet,Xception。SqueezeNet论文:http://arxiv.org/abs/1602.07360TensorFlow实现:https://github.com/Linchunhui/Classification-Set-with-Tensorflow/blob/master...原创 2019-07-23 21:29:11 · 333 阅读 · 0 评论 -
轻量级网络:ShuffleNet系列V1、V2
前言ShuffleNetV1ShuffleNetV2 前言紧接着前面,整理一下ShuffleNet系列的两篇论文。ShuffleNetV1论文:https://arxiv.org/pdf/1707.01083.pdfTensorFlow实现:https://github.com/Linchunhui/Classification-Set-with-Tensorflow/bl...原创 2019-07-25 20:56:29 · 405 阅读 · 0 评论 -
目标检测系列:CARAFE: Content-Aware ReAssembly of FEatures
Index1.1.11.2 论文:https://arxiv.org/abs/1905.02188代码暂时还没有开源前言这篇文章是主要重点放在了上采样操作上,特征上采样在很多工作例如目标检测的FPN的构建,图像分割中Decoder都是一个比较重要的操作。而目前常用的上采样主要有2种,一种是双线性插值,但是双线性插值只考虑到了相邻的亚像素空间,因此没法获取充足的语义信息...原创 2019-08-04 18:45:43 · 5646 阅读 · 1 评论 -
目标检测系列:传统方法
前言概述算法区域提取特征提取分类优缺点 前言之前开题的时候写的一部分综述,整理一下在博客上。概述图像分类,检测以及分割是计算机视觉领域的三大任务。图像分类是将图像划分为单个类别,通常对应于图像中最突出的物体。但是现实世界的很多图片通常包含的不只是一个物体,此时如果使用图像分类模型为图像分配一个单一标签其实是非常粗糙的,并不准确。对于这样的情况,就需要目标检测模型,...原创 2019-07-31 20:46:43 · 5596 阅读 · 1 评论 -
目标检测系列:RCNN、SPP、Fast RCNN
RCNNSPPNetFast RCNN RCNN动机目标检测是计算机视觉中最重要的课题之一,传统的目标检测算法包括Haar特征+Adaboost算法、HOG特征+SVM算法以及DPM算法等等,但是传统算法比较依赖一系列复杂的系统,并且在目标检测的准确率上达到了瓶颈。而卷积神经网络(CNN)在20世纪90年代之后,在2012年的ImageNet比赛上,Alexnet的卷积神经网络...原创 2019-07-31 21:19:48 · 635 阅读 · 0 评论 -
目标检测系列:Faster RCNN、FPN
Faster RCNNFPN Faster RCNN动机Fast RCNN虽然对于检测的速度已经接近于达到实时,但是候选区域的提取方法依然是依赖于传统的算法例如选择性搜索,而选择性搜索在CPU上要实现一张图像的候选区域提取需要达到2秒,显然是非常耗时的。而GPU可以达到加速网络计算的速度,因此想到利用GPU加速的网络来代替传统的算法从而实现候选区域的提取过程。于是提出RPN(区域...原创 2019-07-31 21:34:19 · 2190 阅读 · 0 评论 -
目标检测系列:R-FCN、Mask RCNN、Cascade RCNN
R-FCNMask RCNNCascade RCNN R-FCN动机Faster RCNN中加入了RPN,但网络中仍然可以分为两部分,一部分是RPN与检测网络部分共享特征的卷积层,还有一部分就是RPN迷你网络以及检测网络部分分别连接分类和回归分支的全连接层,这些隐藏层是不共享参数的,而且全连接层的参数量非常大,因此会影响计算量,造成检测速度不够快。卷积网络部分之前的AlexNe...原创 2019-07-31 21:51:29 · 6631 阅读 · 0 评论 -
轻量级网络:IGCV系列V1、V2、V3
前言IGCV1IGCV2IGCV3 前言前面在写ShuffleNet的时候提到了解决Group Conv各个组之间的信息交互的问题就提到了IGCV,今天就整理一下IGCV系列。附上微软的视频分享:https://www.bilibili.com/video/av23295590?from=search&seid=7224169471719308503IGCV1论文...原创 2019-07-26 21:28:31 · 3210 阅读 · 0 评论 -
轻量级网络:ESPNet系列
前言ESPNetV1ESPNetV2 前言虽然这个主要是语义分割的轻量级网络模型,但是模块的设计还是很有参考意义的。ESPNetV1论文:https://arxiv.org/abs/1803.06815v2代码:https://github.com/sacmehta/ESPNet创新点这篇文章主要创新点也就是ESP模块的设计,将标准的卷积分解为2个部分point-w...原创 2019-07-26 21:58:10 · 2457 阅读 · 0 评论 -
各种Normalization:BatchNorm、LayerNorm、InstanceNorm、GroupNorm、SwitchableNorm、AttentiveNorm
Index前言NormalizationBatchNormLayerNormInstanceNormGroupNormSwitchableNormAttentiveNorm主要参考了这篇博客BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结,另外添加了Attent...原创 2019-08-08 17:22:37 · 2047 阅读 · 0 评论