【dog与lxy】8.25题解-land

land


题目描述

dog终于有了一块领地,但是现在可怜的dog面临着lxy的入侵,于是他决定在自己的领地设置炮楼来保卫自己免受QJ。现在dog找到它可以在领地上设置炮楼的N个地点。但是留给dog的时间不多了,dog决定赶快建4个炮楼。而现在的问题是dog希望这4个炮楼的防守区域最大。而4个炮楼的防守区域就是这4个炮楼的多边形的面积。Dog马上找到了你,请你帮助他,而你不忍心让dog惨遭蹂躏,那么请告诉dog他的防守区域最大为多少。(保证最终得到的防守区域是凸四边形)

输出输出

输入文件:
第1行1个数n,表示可能修建炮楼的位置。接下来n行,每行2个数x,y,表示可能的炮楼的位置。(不考虑地球曲面的影响,默认为dog的领地是块平面,然后建立直角坐标系,给出的就是直角坐标系上的位置)。

输出文件:
dog他的防守区域最大为多少。精确到小数点后3位。

样例

输入

5
0 0
1 0
1 1
0 1
0.5 0.5

输出

1

说明

数据范围

100%的数据中,n<=2000,|x|,|y|<=100000.
50%的数据中,n<=1000, |x|,|y|<=10000.
30%的数据中,n<=50, |x|,|y|<=100.

思路

给出点集S,要求从S中选出4个点,使得这四个点组成的四边形面积最大(S<=2000)
如果最终得到的是凸四边形,题目就好做得多了。
对于这一题数据较小,O(n^2)的复杂度是能够AC的。

优美的暴力
  1. 对于第一个点,找出离它最远的点,连接这两个点成一个线段
  2. 枚举每一个点,分别找出线段两边距离线段最远的点
  3. 用叉乘或者分割成两个三角形计算四边形的面积
  4. 与最大值比较,更新最大值
  5. 对于第二个点,第三个······重复操作

代码

#include<iostream>
#include<cstdio>
#include<cmath>
#define MAXX 2000+5
using namespace std;
int n,maxnum,maxup,maxunder;
double x[MAXX],y[MAXX],k,b;
inline void search(int p){
    double maxn=-1000;
    for(int i=1;i<=n;i++){
        if(i==p) continue;
        if(maxn<sqrt((x[i]-x[p])*(x[i]-x[p])+(y[i]-y[p])*(y[i]-y[p]))){
            maxn=sqrt((x[i]-x[p])*(x[i]-x[p])+(y[i]-y[p])*(y[i]-y[p]));
            maxnum=i;
        }
    }
}
inline void fangcheng(int i){
    k=(y[i]-y[maxnum])/(x[i]-x[maxnum]);
    b=y[i]-k*x[i];
}
inline void runup(int p){
    double maxn=-1000;
    for(int i=1;i<=n;i++){
        if(i==p) continue;
        if(x[i]*k+b>=y[i]) continue;
        if(maxn<(abs(k*x[i]-y[i]+b)/sqrt(k*k+1))){
            maxn=(abs(k*x[i]-y[i]+b)/sqrt(k*k+1));
            maxup=i;
        }
    }
}
inline void rununder(int p){
    double maxn=-1000;
    for(int i=1;i<=n;i++){
        if(i==p) continue;
        if(x[i]*k+b<=y[i]) continue;
        if(maxn<(abs(k*x[i]-y[i]+b)/sqrt(k*k+1))){
            maxn=(abs(k*x[i]-y[i]+b)/sqrt(k*k+1));
            maxunder=i;
        }
    }
}
inline double get_s(int i){
    double s=0;
    s+=x[i]*y[maxup]-x[maxup]*y[i];
    s+=x[maxup]*y[maxnum]-x[maxnum]*y[maxup];
    s+=x[maxnum]*y[maxunder]-x[maxunder]*y[maxnum];
    s+=x[maxunder]*y[i]-x[i]*y[maxunder];
    s*=0.5;
    s=abs(s);
    return s;
}
int main(){
    freopen("Land.in","r",stdin);
    freopen("Land.out","w",stdout);
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%lf%lf",&x[i],&y[i]);
    double ans=-1;
    for(int i=1;i<=n;i++){
        search(i);
        fangcheng(i);
        runup(i);
        rununder(i);
        ans=max(get_s(i),ans);
    }
    printf("%.3lf",ans);
    return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值