【数论】逆元详解

本文介绍了数论中逆元的概念,特别是在模运算下解决除法问题的重要性。通过举例说明了除法在模运算下的不适用性,并引出了逆元的概念。文章详细讲解了三种求逆元的方法:费马小定理、扩展欧几里得算法和欧拉定理,其中扩展欧几里得算法适用于所有整数,而欧拉定理在质数模下特别有效。每种方法都提供了相应的代码实现。
摘要由CSDN通过智能技术生成

概念

先来引入求余概念

$(a + b) \% p = (a\%p + b\%p) \%p$ (对)
$(a - b) \% p = (a\%p - b\%p) \%p$ (对)
$(a * b) \% p = (a\%p * b\%p) \%p$ (对)
$(a / b) \% p = (a\%p / b\%p) \%p$ (错)

为什么除法错的
证明是对的难,证明错的只要举一个反例
(100/50)%20 = 2 ≠ (100%20) / (50%20) %20 = 0
对于一些题目,我们必须在中间过程中进行求余,否则数字太大,电脑存不下,那如果这个算式中出现除法,我们是不是对这个算式就无法计算了呢?

答案当然是 NO

这时就需要逆元了
我们知道
如果
a*x = 1
那么x是a的倒数,x = 1/a
但是a如果不是1,那么x就是小数
那数论中,大部分情况都有求余,所以现在问题变了
a*x = 1 (mod p)
那么x一定等于1/a吗
不一定
所以这时候,我们就把x看成a的倒数,只不过加了一个求余条件,所以x叫做 a关于p的逆元

比如2 * 3 % 5 = 1,那么3就是2关于5的逆元,或者说2和3关于5互为逆元

这里3的效果是不是跟1/2的效果一样,所以才叫数论倒数
a的逆元,我们用inv(a)来表示
那么(a / b) % p = (a * inv(a) ) % p = (a % p * inv(a) % p) % p
这样就把除法,完全转换为乘法了

方法一:

费马小定理
a^(p-1) ≡1 (mod p)

两边同除以a
a^(p-2) ≡1/a (mod p)
这可是数论,还敢写1/a
应该写a^(p-2) ≡ inv(a) (mod p)

所以inv(a) = a^(p-2) (mod p)
这个用快速幂求一下,复杂度O(logn)

代码

 LL pow_mod(LL a, LL b, LL p){
     //a的b次方求余p 
      LL ret = 1;
      while(b){
          if(b & 1) ret = (ret * a) % p;
          a = (a * a) % p;
          b >>= 1;
      }
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值