【Qt象棋游戏】08_人机博弈高阶算法

本文介绍了如何在象棋游戏中应用极大极小值算法(Minmax算法)来提升电脑玩家的智能水平。通过电脑走一步并预测对手的多步反应,实现“走一步看两步”甚至“走一步看多步”的高级策略。通过递归增加决策深度,电脑可以预判更多步,但也需要注意随着Level值增大,内存消耗会显著增加,可能导致程序卡顿。
摘要由CSDN通过智能技术生成

01 - 极大极小值算法

  上一期博客介绍了最为简单的人机博弈算法,包括获取所有合法路径,简单的估值以及电脑走棋,本期博客在介绍估值算法上增加极大极小值算法(Minmax算法),让电脑走棋更加智能化。
  极大极小值算法是一种找出失败的最大可能性中的最小值的算法,即最小化对手的最大收益。举个栗子,电脑为A,人类为B,A在走棋之前需要考虑A走了某一步之后,看看B有哪些走法,B又不傻,所以B肯定是要选择让A得分最小的走法走棋,而A就是在A的所有走法中选择B给出让A得分最小的走法中得分最多的走法。听起来比较抽象,试着多读几遍就理解了。
  电脑导入极大极小值算法分以下3步:
  (1)在当前局面下获取电脑所有走棋路径,并试着走一下;
  (2)在电脑试着走完一步基础上获取人类所有走棋路径,并以人类的视角试着走一下,然后评估局面分(局面分是以电脑角度计算的,即电脑总分 - 人类总分),遍历完人类所有走棋路径后返回这些局面中的最小值(对电脑最不利而对人类最优利的情况);
  (3)在上一步返回的局面分的最小值中,找到最大值,并且锁定与该最大值对应的走棋路径作为“步”返回值返回。

02 - 电脑和人类所有走棋路径

  实现算法第一步是要获取电脑和人类的所有走棋路径,所以对getAllPossibleMove函数稍微做出以下修改:

/**
 *
 *  @brief : 获取所有棋子可行走的步骤
 *
 *  @param : steps : 保存移动棋子信息的属性(原坐标、目标坐标、ID、目标ID)
 *
 *  @return: 无
 *
 **/
void ChessArea::getAllPossibleMove(QVector<Step *> &steps)
{
   
    int min = 16, max = 32;
    if(this->bRedTurn)
    {
   
        min = 0;
        max = 16;
    }

    //遍历所有黑方棋子
    for(int i = min; i < max; i++)
    {
   
        //如果棋子已死则直接跳过
        if(myChess[i].isDead)
            continue;

        // 遍历所有行坐标
        for(int x=0; x<9; x++)
        {
   
            // 遍历所有列坐标
            for(int y=0; y<10; y++)
            {
   
                //获取想要杀死的棋子的id
                int killid = this->getChessID(x, y);

                //若想要杀死的棋子与行走的棋子颜色相同则跳过
                if(sameColor(i, killid))
                    continue;

                //判断某一棋子能不能行走
                if(canMove(i, killid, x, y))
   
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值