# !/usr/bin/python
# coding:utf-8
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
def createInitSet(dataSet):
"""产生初始数据集合"""
retDict = {}
for trans in dataSet:
fset = frozenset(trans)
retDict.setdefault(fset, 0)
retDict[fset] += 1
return retDict
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None
self.parent = parentNode
self.children = {}
def inc(self, numOccur):
self.count += numOccur
def disp(self, ind=1):
print(' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.disp(ind + 1)
def createTree(dataSet, minSup=1):
headerTable = {}
#此一次遍历数据集, 记录每个数据项的支持度
for trans in dataSet:
for item in trans:
headerTable[item] = headerTable.get(item, 0) + 1
#根据最小支持度过滤
lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))
for k in lessThanMinsup:
del(headerTable[k])
freqItemSet = set(headerTable.keys())
#如果所有数据都不满足最小支持度,返回None, None
if len(freqItemSet) == 0:
return None, None
for k in headerTable:
headerTable[k] = [headerTable[k], None]
retTree = treeNode('φ', 1, None)
#第二次遍历数据集,构建fp-tree
for tranSet, count in dataSet.items():
#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度
localD = {}
for item in tranSet:
if item in freqItemSet:
localD[item] = headerTable[item][0]
if len(localD) > 0:
#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1], p[0]), reverse=True)]
updateTree(orderedItems, retTree, headerTable, count)
return retTree, headerTable
def updateTree(items, inTree, headerTable, count):
if items[0] in inTree.children: # 检查该元素是否已经存在fp树中
inTree.children[items[0]].inc(count) # 计数+1
else: # 不存在则添加到fp树中
inTree.children[items[0]] = treeNode(items[0], count, inTree)
if headerTable[items[0]][1] == None: # 更新头表
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1: # 截取已排序list的剩余部分,并以当前节点作为父节点
updateTree(items[1:], inTree.children[items[0]], headerTable, count)
def updateHeader(nodeToTest, targetNode):
while (nodeToTest.nodeLink != None): # 找到尾节点
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def ascendTree(leafNode, prefixPath):
"""获取当前节点的所有祖先"""
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, headTable):
"""获取当前频繁项的所有前缀路径(条件模式基)"""
condPats = {}
treeNode = headTable[basePat][1]
while treeNode != None:
# 获取当前频繁项的所有前缀路径(条件模式基)
prefixPath = []
ascendTree(treeNode, prefixPath)
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count # 该条件模式基获得该节点所具有的置信度
treeNode = treeNode.nodeLink
return condPats
def mineTree(inTree, headerTable, minSup=1, preFix=set([]), freqItemList=[]):
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: (p[1][0], p[0]))]
for basePat in bigL:
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
freqItemList.append(newFreqSet)
# 通过条件模式基找到的频繁项集
condPattBases = findPrefixPath(basePat, headerTable)
# 创建条件fp树
myCondTree, myHead = createTree(condPattBases, minSup)
if myHead != None:
print('condPattBases: ', basePat, condPattBases)
myCondTree.disp()
print('*' * 30)
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
def main():
simpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree, myheader = createTree(dictDat, 3)
myFPTree.disp()
print('*' * 30)
# 获取条件模式基
for key in [v[0] for v in sorted(myheader.items(), key=lambda p: (p[1][0], p[0]), reverse=True)]:
condPats = findPrefixPath(key, myheader)
print(key, condPats)
print('*' * 30)
# 创建条件fp树
mineTree(myFPTree, myheader, 2)
if __name__ == '__main__':
main()