自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

得克特

Git https://github.com/enjlife

  • 博客(281)
  • 收藏
  • 关注

原创 算法--目录

algorithm: 十种排序算法algorithm: 拓扑排序差分数组-解题

2024-04-15 11:13:19 181

原创 推荐优化理论与实践

推荐排序

2023-10-24 10:22:54 199

原创 数学基础学习目录

正定矩阵和半正定矩阵协方差矩阵与多元正态分布

2021-10-24 11:42:58 122

原创 数学、机器学习、深度学习目录

文章目录机器学习深度学习深度学习练习题机器学习1.机器学习实战(1) k-近邻算法(kNN)和决策树2.机器学习实战(2) 基于概率论的分类方法:朴素贝叶斯 python33.机器学习实战(3) Logistic回归 逻辑回归 基于python34.待更新5.机器学习实战(5) AdaBoost元算法 基于python36.机器学习实战(6) 预测数值型数据:回归7.机器学习实战(...

2019-02-10 00:10:29 927

原创 算法题:动态规划

你不小心把一个长篇文章中的空格、标点都删掉了,并且大写也弄成了小写。当然了,你有一本厚厚的词典dictionary,不过,有些词没在词典里。假设文章用sentence表示,设计一个算法,把文章断开,要求未识别的字符最少,返回未识别的字符数。给定一个布尔表达式和一个期望的布尔结果 result,布尔表达式由 0 (false)、1 (true)、& (AND)、 | (OR) 和 ^ (XOR) 符号组成。实现一个函数,算出有几种可使该表达式得出 result 值的括号方法。

2024-05-09 15:05:46 322

原创 算法:图

面试题 16.19. 水域大小

2024-04-26 16:20:35 418

原创 过拟合与欠拟合

过拟合有较为明显的对比可以判断,但欠拟合却是不容易判断的。训练集效果很好,测试集效果变差,在保证训练集与测试集样本分布一致的情况下,很容易得出过拟合的结论。欠拟合不太容易通过这种直接的对比来判断。

2024-04-21 18:48:35 278

转载 二分法、梯度下降法、牛顿法求解根号

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。这种方法可以很有效地求出根号 a的近似值:首先随便猜一个近似值 x,然后不断令 x 等于 x 和 a/x 的平均数,迭代个六七次后 x 的值就已经相当精确了。在这里,我们使用了微积分里导数,通过求出函数导数的值,从而找到函数下降的方向或者是最低点(极值点)。这种算法的原理很简单,我们仅仅是不断用 (x, f(x)) 的切线来逼近方程的根。

2024-04-20 11:57:25 52

原创 算法:指针

常见的双指针。

2024-04-19 22:08:21 346

原创 算法:快速排序

快速排序的一些特殊应用。

2024-04-19 19:28:53 212

原创 算法:堆(优先队列)

堆(优先队列)分为最大堆和最小堆。

2024-04-18 21:03:41 427

原创 COPC评估

这个原因才是你模型缺特征,尤其是缺乏活跃用户的特征,通常活跃用户,系统 rank 为了指标,会使用很重的行为画像作为特征,很容易放大历史点击记录,更加倾向于把他们排上去,如果你高估了该用户的点击倾向,就会导致分数给的很高,但是现实用户不怎么点的现象。这个也会触发新的问题,也就是常说的离线 AUC 很高,但是线上没效果,道理都一样,你模型仅仅是把正负样本的间隔拉开了,并没有真正改善用户看到的内容和布局,才导致高分段 ctr 不见增长。如果你发现auc上升,点击率却不上升,请优先排查bug。

2024-04-17 18:35:23 538

原创 差分数组-解题

你可以假设所有人都出生于 1900 年至 2000 年(含 1900 和 2000 )之间。如果一个人在某一年的任意时期处于生存状态,那么他应该被纳入那一年的统计中。例如,生于 1908 年、死于 1909 年的人应当被列入 1908 年和 1909 年的计数。给定 N 个人的出生年份和死亡年份,第 i 个人的出生年份为 birth[i],死亡年份为 death[i],实现一个方法以计算生存人数最多的年份。如果有多个年份生存人数相同且均为最大值,输出其中最小的年份。

2024-04-15 11:03:40 168

原创 算法中的背包问题

背包问题

2024-04-14 18:40:58 251

原创 算法题:前缀和

前缀和是一种重要的预处理,可以降低查询的时间复杂度。

2024-04-14 11:21:14 401

原创 先验概率和后验概率

具体来说,如果我们有一个分类任务,真实标签(对应于先验概率)可以表示为一个"one-hot"向量,例如在一个三分类问题中,某个样本真实的类别是第二类,那么它的表示可以是[0, 1, 0]。这里,"1"的位置表示这个样本属于第二类的概率是100%,而其他位置为0表示该样本属于其他类的概率是0%。交叉熵是用来衡量两个概率分布之间差异的,其核心目的在于通过最小化模型输出(后验概率)与真实标签分布(可以视作一种“目标”先验概率分布)之间的交叉熵,使模型学习到的概率分布尽可能地接近真实的概率分布。

2024-04-12 21:10:04 754

原创 Normalization

Norm介绍归一化层,目前主要有这几个方法,Batch Normalization(2015年)、Layer Normalization(2016年)、Instance Normalization(2017年)、Group Normalization(2018年)、Switchable Normalization(2018年);batchNorm是在batch上,对NHW做归一化,对小batchsize效果不好;layerNorm在通道方向上,对CHW归一化,主要对RNN作用明显;instance

2024-04-11 15:37:14 444

原创 最长子序列问题

给你一堆n个箱子,箱子宽 wi、深 di、高 hi。箱子不能翻转,将箱子堆起来时,下面箱子的宽度、高度和深度必须大于上面的箱子。实现一种方法,搭出最高的一堆箱子。箱堆的高度为每个箱子高度的总和。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的。给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。输入使用数组[wi, di, hi]表示每个箱子。

2024-04-11 14:13:08 213

原创 给定字符串,替换所有的‘?‘

递归,时间复杂度O(2^k),k为’?动态规划,时间复杂度O(n)

2024-04-10 15:50:37 151

原创 lambdamart

这个loss就是BPR(Bayesian Personal Ranking)Loss。有的博文也会叫做PairWise Logistic Loss 损失函数。RankNet使用了sigmoid函数来转化排序概率。文档相关性相等的情况。的公式能推导出下面第二行公式。包含以下三种情况,包含了。

2024-04-09 17:56:51 921

原创 二分法-各种应用

二分法解题集合

2024-04-03 23:17:07 236

原创 推荐系统-向量召回

Ppos​tazt​​1∗zta​zt所有发生过点击行为的用户总数点击过t的用户数​a是一个超参,一般在1e-3~1e-5之间。

2024-04-01 14:01:09 1017

原创 排序模型全量计算替代召回可行吗

推荐系统:召回和排序

2024-02-18 11:10:18 719

原创 FiBinet解读

FiBinet

2023-10-30 15:02:36 235

原创 Youtube DNN:Deep Neural Networks for YouTube Recommendations

大规模的推荐场景,能够支持分布式训练和提供有效率的服务。不断更新的新物料。稀疏的用户行为,包含大量的噪声。我们已经描述了用于推荐YouTube视频的深度神经网络架构,分为两个不同的问题:召回和排序。我们的深度协同过滤模型能够有效地吸收多种信号,并通过捕获非对称的协同观看行为和防止未来信息泄漏,在现场指标上表现良好,超越了YouTube以前使用的矩阵分解方法。从分类器中保留区分性信号也是取得良好结果的关键,否则模型会过度拟合代理问题,并且无法很好地转移到首页。

2023-10-30 12:01:27 766

原创 tensorflow损失函数

损失函数

2023-09-18 15:53:30 198

原创 tfserving

tfserving

2023-08-03 15:20:53 181

原创 tensorflow错误及解决办法

tensorflow

2023-07-24 15:32:56 1049

原创 deeprec编译

deeprec环境编译

2023-07-20 10:16:07 110

原创 ckpt转saved_model

ckpt 转 saved_model

2023-07-18 21:14:30 200

原创 kubeflow安装

Kubeflow

2023-06-30 18:04:12 1187

原创 kubectl 常用命令

pod端口映射 kubectl port-forward pod_name 6379:6379。查看pod状态 kubectl describe pods trainer-ps-0。删除已配置的资源 kubectl delete -f calico.yaml。删除pod kubectl delete pod test-pod。kubectl常用命令。

2023-06-30 15:15:11 159

原创 The POM for xxx is missing, no dependency

主要含义是指公司部分仓库的依赖不通过镜像下载。1.在setting.xml注释掉镜像部分。,xxx是公司仓库id。

2023-06-01 20:20:15 1131

原创 Mac安装多版本java

mac安装多版本java

2022-10-29 11:45:08 2583 1

原创 黑塞矩阵-二阶偏导矩阵

黑塞矩阵

2022-07-05 19:42:00 1028

原创 torch.addcdiv 和 torch.tensor.addcdiv_

TORCH.ADDCDIVtorch.addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor# input + value * tensor1 / tensor2# input, tensor1, tensor2需要是可广播的tensort = torch.randn(1, 3)t1 = torch.randn(1, 3)t2 = torch.randn(3, 1)torch.addcdiv(t, t1, t2,

2022-04-01 11:23:00 715

原创 SWA(随机权重平均)

SWA(随机权重平均)[Averaging Weights Leads to Wider Optima and Better Generalization](Averaging Weights Leads to Wider Optima and Better Generalization)随机权重平均:在优化的末期取k个优化轨迹上的checkpoints,平均他们的权重,得到最终的网络权重,这样就会使得最终的权重位于flat曲面更中心的位置,缓解权重震荡问题,获得一个更加平滑的解,相比于传统训练有更泛化

2022-03-23 17:55:57 4157

原创 parser.add_argument bool类型参数设置

ArgumentParser在传布尔类型变量时,传入参数按字符串处理,所以无论传入什么值,参数值都为True。import argparseparser = argparse.ArgumentParser()parser.add_argument("--t1", default=False, type=bool)parser.add_argument("--t2", default=False, action='store_true')args = parser.parse_args()pr

2022-03-18 19:55:48 2588

原创 How to Fine-Tune BERT for Text Classification

文章目录简介方法论微调策略进一步预训练多任务预训练实验1结果长文本处理(Dealing with long texts)选择某层的特征(Features from different layers)灾难性遗忘(Catastrophic Forgetting)逐层衰减的比率(Layer-wise Decreasing Layer Rate)实验2结果任务内数据预训练(Within-Task Further Pre-Training)领域内和交叉领域进一步预训练(In-Domain and Cross-Doma

2022-03-16 17:07:37 1185

原创 EMA指数滑动平均(Exponential Moving Average)

指数滑动平均(Exponential Moving Average)指数滑动平均也叫权重移动平均(Weighted Moving Average),是一种给予近期数据更高权重的平均方法。假设有nnn个权重数据:[θ1,θ2,⋯ ,θn][\theta_1,\theta_2,\cdots,\theta_n][θ1​,θ2​,⋯,θn​],EMA的计算公式:vt=βvt−1+(1−β)θt(1)v_t=\beta v_{t-1}+(1-\beta)\theta_t\tag{1}vt​=βvt−1​+(

2022-03-08 20:23:39 6572

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除