AlexNet

AlexNet是2012年深度学习的突破,它在ImageNet数据集上的成功归功于更深的网络结构、ReLU激活函数、dropout正则化和数据增强。相比于LeNet,AlexNet拥有更多卷积层和参数,增强了模型的表达能力,推动了从浅层到深层网络的转变。尽管现代网络已超越AlexNet,但它在计算机视觉领域的贡献不可忽视。
摘要由CSDN通过智能技术生成

AlexNet

深度卷积神经网络的突破出现在2012年,突破可归因于两个关键因素:数据和硬件。下图是一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。AlexNet和LeNet的设计理念非常相似,但也存在显著差异。 首先,AlexNet比相对较小的LeNet5要深得多。 AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。 其次,AlexNet使用ReLU而不是sigmoid作为其激活函数。 AlexNet通过dropout控制全连接层的模型复杂度,而LeNet只使用了权重衰减。为了进一步扩充数据,AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。 这使得模型更健壮,更大的样本量有效地减少了过拟合。

从LeNet(左)到AlexNet(right)

Ps:如果AlexNet的输入图片尺寸为227*227计算通道会更简单

小结

  • AlexNet的架构与LeNet相似,但使用了更多的卷积层和更多的参数来拟合大规模的ImageNet数据集。

  • 今天,AlexNet已经被更有效的架构所超越,但它是从浅层网络到深层网络的关键一步。

  • 尽管AlexNet的代码只比LeNet多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出色的实验结果。这也是由于缺乏有效的计算工具。

  • Dropout、ReLU和预处理是提升计算机视觉任务性能的其他关键步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值