【AKOI2019暑期欢乐模拟赛】T1 签到题 题解

本博客详细解析了AKOI2019暑期欢乐模拟赛的签到题,该题属于数论范畴。题目较为简单,但初期迷惑性强,导致部分选手出错。解法包括暴力打表和数学推导,得出n的值始终为1到k的平方和,即6k(k+1)(2k+1)。
摘要由CSDN通过智能技术生成

原题链接:戳我
题意:略

出题人的碎碎念

T 1 T1 T1是真心送温暖,可惜……
如此水沝淼㵘的结论题竟然在开局搞蒙了大部分人?
这道题的正解其实不太好推,但是数据实在太裸,瞎蒙个结论都能过。
的确有不少人的瞎蒙是正确的。但是不是忘了开long long就是忘了return 0(各种千奇百怪的错法?)
温暖没送成,鸭蛋倒是送了一堆。

解法一

正常人的思路:
暴力打表/人脑计算。直接算出 k = 1 k=1 k=1~ 5 5 5的答案,观察规律。
不难发现 n n n 永远可取 1 , 2 , 3 , . . . , k 1,2,3,...,k 1,2,3,...,k ,因此输出 1 1 1 k k k的平方和即可。用公式半分钟切掉。

解法二

什么?你想知道正解?那就让我们来推一推。
由于 x 1 , x 2 , . . . , x k ∈ N ∗ x_1,x_2,...,x_k∈N^* x1,x2,...,xkN x 1 &lt; x 2 &lt; . . . &lt; x k x_1&lt;x_2&lt;...&lt;x_k x1<x2<...<xk
所以 x 1 ≥ 1 , x 2 ≥ 2 , . .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值