大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合
大数据 = “海量数据”+“复杂的数据类型”
如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”

Drill/Impala :内存SQL引擎,Dremel开源实现
BigTop:Hadoop生态系统打包分发与测试
Lucence :全文搜索引擎
Nutch:爬虫系统
Thrift:网络接口开发工具
数据采集
Flume(NG)
Sqoop
Scribe
Camus
数据存储


数据建模分析
机器学习:Spark MLlib
Mahout
图计算:Spark GraphX
Neo4j
数据分析





HDFS简介
优点
- 处理超大文件
能用来存储管理PB级的数据 1PB = 1024TB - 处理非结构化数据
- 流式的访问数据
一次写入、多次读取 - 运行于廉价的商用机器集群上
可运行在低廉的商用硬件集群上
故障时能继续运行且不让用户察觉到明显的中断
局限性
- 不适合处理低延迟数据访问
HDFS是为了处理大型数据集分析任务的,主要是为了

本文深入探讨了大数据的核心组件HDFS,详细介绍了其数据采集、存储、建模分析和分析过程。讨论了HDFS的优点,如处理大规模非结构化数据的能力,以及其局限性,如不适用于低延迟访问。此外,文章还涵盖了HDFS的体系结构,包括NameNode、DataNode等组件,以及数据块、复制策略和故障恢复机制,强调了HDFS在大数据处理中的关键作用。
最低0.47元/天 解锁文章
1151

被折叠的 条评论
为什么被折叠?



