人工智能之编程进阶 Python高级:第四章 数学类模块

程序员成长:技术、职场与思维模式实战指南 10w+人浏览 1.4k人参与

人工智能之编程进阶 Python高级

第四章 数学类模块



前言

本章节主要讲述和数学相关的模块。本文涵盖了Python 标准库中 reoperatormathrandomhashlibstatistics 六个常用模块的详细说明与使用示例,包括核心功能、典型用法和最佳实践。


一、re 模块:正则表达式(Regular Expressions)

用于​字符串模式匹配与文本处理​。

常用函数

import re

text = "Contact: alice@example.com, bob123@gmail.com"

# 1. 搜索(返回第一个匹配)
match = re.search(r'\b\w+@\w+\.\w+\b', text)
if match:
    print("找到邮箱:", match.group())  # alice@example.com

# 2. 查找所有匹配
emails = re.findall(r'\b\w+@\w+\.\w+\b', text)
print("所有邮箱:", emails)  # ['alice@example.com', 'bob123@gmail.com']

# 3. 替换
cleaned = re.sub(r'\d+', '#', "ID: 12345, Code: 67890")
print(cleaned)  # ID: #, Code: #

# 4. 分割
parts = re.split(r'[,\s]+', "apple, banana  orange")
print(parts)  # ['apple', 'banana', 'orange']

# 5. 编译正则(提高性能)
pattern = re.compile(r'\d{3}-\d{4}')
phones = pattern.findall("Call 123-4567 or 987-6543")

常用元字符

符号含义
\d数字 [0-9]
\w字母/数字/下划线 [a-zA-Z0-9_]
\s空白字符(空格、制表符等)
.任意字符(除换行)
^ $行首 / 行尾
* + ?0+/1+/0 或 1 次
{n,m}重复 n 到 m 次
[]字符集合
()分组

✅ ​建议​:复杂正则使用 re.VERBOSE 模式增加可读性。


二、operator 模块:高效操作符函数

将 Python 操作符(如 +, ==, [])封装为​函数​,常用于高阶函数(如 sorted, map)。

常用函数

import operator

# 算术
print(operator.add(2, 3))      # 5
print(operator.mul(4, 5))      # 20

# 比较
print(operator.eq(10, 10))     # True (==)
print(operator.lt(3, 5))       # True (<)

# 属性/索引访问
students = [
    {'name': 'Alice', 'score': 90},
    {'name': 'Bob', 'score': 85}
]

# 按 score 排序(替代 lambda)
sorted_students = sorted(students, key=operator.itemgetter('score'))
print(sorted_students)

# 多级排序
sorted_by_name_score = sorted(students, 
                              key=operator.itemgetter('name', 'score'))

# 获取对象属性
class Person:
    def __init__(self, name):
        self.name = name

p = Person("Charlie")
print(operator.attrgetter('name')(p))  # Charlie

✅ ​优势​:比 lambda 更快、更清晰。


三、math 模块:数学函数

提供​浮点数数学运算​(不支持复数,复数用 cmath)。

常用函数

import math

# 基础常数
print(math.pi)     # 3.141592653589793
print(math.e)      # 2.718281828459045

# 幂与对数
print(math.sqrt(16))       # 4.0
print(math.pow(2, 3))      # 8.0
print(math.log(10))        # 自然对数 ≈2.302
print(math.log10(100))     # 2.0

# 三角函数(弧度)
print(math.sin(math.pi/2)) # 1.0
print(math.degrees(math.pi)) # 180.0

# 取整
print(math.ceil(3.2))      # 4
print(math.floor(3.8))     # 3
print(math.trunc(-3.7))    # -3

# 最大公约数(Python 3.5+)
print(math.gcd(48, 18))    # 6

⚠️ 注意:所有输入输出均为 float(除 gcd 等少数函数)。


四、random 模块:伪随机数生成

用于生成随机数、随机选择、打乱序列等。

常用函数

import random

# 设置种子(可复现结果)
random.seed(42)

# 随机浮点数 [0.0, 1.0)
print(random.random())

# 指定范围浮点数
print(random.uniform(1.5, 10.5))  # 1.5 ~ 10.5

# 随机整数(含两端)
print(random.randint(1, 10))      # 1~10

# 从序列随机选一个
colors = ['red', 'green', 'blue']
print(random.choice(colors))

# 随机抽样(不放回)
print(random.sample(range(1, 100), 5))  # 5个不重复数字

# 打乱列表(原地修改)
deck = list(range(1, 53))
random.shuffle(deck)
print(deck[:5])  # 前5张牌

# 加权随机选择(Python 3.6+)
choices = random.choices(['A', 'B', 'C'], weights=[1, 2, 3], k=10)

🔒 ​安全提示​:
random 是​伪随机​,不适用于加密!加密请用 secrets 模块。


五、hashlib 模块:哈希算法

用于生成​**消息摘要(如 MD5、SHA 系列)**​,常用于校验、密码存储(需加盐)。

常用哈希

import hashlib

data = b"Hello, world!"

# MD5(不推荐用于安全场景)
md5_hash = hashlib.md5(data).hexdigest()
print("MD5:", md5_hash)

# SHA-256(推荐)
sha256_hash = hashlib.sha256(data).hexdigest()
print("SHA256:", sha256_hash)

# 更新式哈希(处理大文件)
sha1 = hashlib.sha1()
sha1.update(b"Part 1")
sha1.update(b"Part 2")
print("SHA1:", sha1.hexdigest())

# 支持的算法
print(hashlib.algorithms_available)
# {'md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512', ...}

安全实践:密码哈希

import hashlib
import os

def hash_password(password: str, salt: bytes = None) -> tuple[bytes, bytes]:
    if salt is None:
        salt = os.urandom(32)  # 32字节盐值
    pwd_hash = hashlib.pbkdf2_hmac('sha256', password.encode('utf-8'), salt, 100000)
    return pwd_hash, salt

# 存储 pwd_hash 和 salt
hashed, salt = hash_password("my_secret")
# 验证时用相同 salt 重新哈希比较

✅ ​推荐​:使用 hashlib.pbkdf2_hmacbcrypt/scrypt 进行密码哈希。


六、statistics 模块:统计计算

提供​基础统计函数​,适用于数值数据分析。

常用函数

import statistics

data = [1, 2, 2, 3, 4, 4, 4, 5]

# 中心趋势
print("均值:", statistics.mean(data))        # 3.125
print("中位数:", statistics.median(data))    # 3.5
print("众数:", statistics.mode(data))        # 4

# 离散程度
print("方差:", statistics.variance(data))    # 样本方差
print("标准差:", statistics.stdev(data))     # 样本标准差

# 其他
print("几何平均数:", statistics.geometric_mean([1, 2, 4]))  # ≈2.0
print("分位数:", statistics.quantiles(data, n=4))  # 四分位数

⚠️ 注意:

  • variancestdev 默认计算​样本​(分母 n-1)
  • 总体方差用 pvariance,总体标准差用 pstdev

七、模块对比与使用场景总结

模块主要用途典型场景
re文本模式匹配日志解析、数据清洗、验证输入格式
operator操作符函数化高阶函数中的键函数(如 sorted
math数学计算科学计算、几何、工程公式
random随机数生成游戏、模拟、抽样、测试数据生成
hashlib哈希摘要文件校验、密码存储、数字签名
statistics统计分析数据探索、简单报表、教育用途

八、最佳实践建议

  1. 正则表达式​:
    • 复杂模式使用 re.VERBOSE
    • 避免过度使用(有时 str.split() 更高效)
  2. 随机数​:
    • 加密场景用 secrets 模块
    • 测试时设置 random.seed() 保证可复现
  3. 哈希​:
    • 永远不要用 MD5/SHA1 存密码
    • 密码必须加盐(salt)
  4. 统计​:
    • 大数据集用 numpy/pandas 替代 statistics
    • 注意样本 vs 总体的区别
  5. 数学​:
    • 整数精确计算用 fractionsdecimal
    • 复数用 cmath

总结

经过本文掌握这六个模块,就能高效处理文本、数学、随机、安全、统计等常见数学类任务,加油!

资料关注

公众号:咚咚王

《Python编程:从入门到实践》
《利用Python进行数据分析》
《算法导论中文第三版》
《概率论与数理统计(第四版) (盛骤) 》
《程序员的数学》
《线性代数应该这样学第3版》
《微积分和数学分析引论》
《(西瓜书)周志华-机器学习》
《TensorFlow机器学习实战指南》
《Sklearn与TensorFlow机器学习实用指南》
《模式识别(第四版)》
《深度学习 deep learning》伊恩·古德费洛著 花书
《Python深度学习第二版(中文版)【纯文本】 (登封大数据 (Francois Choliet)) (Z-Library)》
《深入浅出神经网络与深度学习+(迈克尔·尼尔森(Michael+Nielsen) 》
《自然语言处理综论 第2版》
《Natural-Language-Processing-with-PyTorch》
《计算机视觉-算法与应用(中文版)》
《Learning OpenCV 4》
《AIGC:智能创作时代》杜雨+&+张孜铭
《AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型》
《从零构建大语言模型(中文版)》
《实战AI大模型》
《AI 3.0》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咚咚王者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值