mmdetection
文章平均质量分 77
gy-7
欢迎转载,需注明出处。欢迎大家star我的Github:https://github.com/gy-7
展开
-
mmdetection训练自己的模型【数据集转变,数据集划分,数据集gt可视化,mmdetection配置文件生成及修改,开始训练,gradio部署】
针对有一点mmdetction基础的,然后想根据自己的数据集,熟练训练自己的模型。需要改成自己配置的地方,我会在代码中做好标记,方便修改。我们先了解一下mmdetection的基本流程,你想训练一个模型,你只需要准备的是:数据集,mmdetection的配置文件。下面我分为两部分,分别处理这两个东西。然后你就可以用官方实现的训练工具愉快的进行训练了。1. 数据集的处理先把数据集复制到mmdetection的data目录下,方便管理,data目录下一个文件夹就是一个数据集。dataset1/data/原创 2021-12-22 22:52:30 · 6824 阅读 · 8 评论 -
mmdetection使用wandb查看训练日志
mmdetection查看日志之前一直是在用TextLoggerHook,已经觉得挺方便的了,自从用了wandb之后,发现wandb真不错,看log更方便了,回不去了。原创 2022-09-28 20:07:03 · 3213 阅读 · 8 评论 -
mmcls/mmdet模型部署至 TorchServe
mmcls/mmdet模型部署至 TorchServe原创 2022-08-22 15:19:32 · 998 阅读 · 1 评论 -
mmcls 多标签模型部署在torch serve
各个文件说明:cls_requests_demo:分类模型请求api服务的demodet_requests_demo:检测模型请求api服务的demoinference:要修改的inference代码mmcls_handler:要修改的mmcls_handler代码torchserve_log:过程中遇到的报错集合。原创 2022-09-08 17:18:56 · 644 阅读 · 0 评论 -
使用OpenMMLab系列的开源库时,常用的脚本合集。
使用OpenMMLab系列的开源库时,常用的脚本合集。原创 2022-09-01 18:41:53 · 567 阅读 · 0 评论 -
mm系列权重文件瘦身
我们训练完的mmcls,mmdet等模型,保存好的训练权重pth是比较大的。并且里边有两个参数是我们推理的时候用不到的。我们能够看到瘦身前180m,瘦身后92m,跟pytorch官方的resnet50预训练权重差不多大。(会在resnet50.pth文件的同级目录下生成一个resnet50_thin.pth)我们在推理过程中其实只需要state_dict就可以了,里边保存的是我们训练好的权重参数。state_dict:我们模型的参数。optimizer:优化器的参数。meta:训练时的环境配置。原创 2022-08-24 20:38:28 · 781 阅读 · 0 评论 -
堡垒机安装pytorch,mmcv,mmclassification,并训练自己的数据集
mmcls训练上传并安装在堡垒机中进入你的conda环境(下面的mmclassification改为自己的conda环境名字),然后安装一下就可以了。堡垒机安装mmcv下载mmcv安装包也是同样,去 mmcv GitHub官网 下载mmcv你想要的版本,复制-f后边的网址打开,然后选择自己要装的mmcv版本,下载下来。上传到堡垒机中后安装。堡垒机安装mmclassification1️⃣ ........................原创 2022-06-15 19:54:28 · 1172 阅读 · 2 评论 -
Swin Transformer安装记录(国内源,飞快)
0. 设备环境ubuntu–20.10GPU–3080cuda–11.0torch–1.7.0mmcv–1.3.8mmdetection–2.11.0所有的git的项目,都可以用 GitHub Proxy 代理加速 (ghproxy.com) 转链,尤其是swin transformer的权重文件,又大下载的又慢,转完链后就飞快了。1. 创建环境conda create -n swin python=3.7conda activate swin2. 安装pytorch(利用国内源原创 2022-05-04 16:08:33 · 2153 阅读 · 3 评论 -
# AssertionError: The `num_classes` (80) in Shared2FCBBoxHead of MMDataParallel does not matche
我看很多人都遇到了这个问题,有很多解决了的。我就把这篇博文再完善一下,让大家对mmdetection使用得心应手。mmdetection训练自己的数据集时报错 ⚠️ :# AssertionError: The `num_classes` (3) in Shared2FCBBoxHead of MMDataParallel does not matches the length of `CLASSES` 80) in CocoDataset你可能已经修改了以下两个文件,但是还是报错:mmdetec原创 2022-04-26 22:17:09 · 3649 阅读 · 7 评论