自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(48)
  • 收藏
  • 关注

原创 MATLAB中使用机器人运动学1

1.2维,3维空间姿态描述2维函数效果T=se2(x,y,theta)代表(x,y)的平移和theta角度的旋转trplot2(T)画出相对于世界坐标系的变化TT=se2(x,y,theta)代表(x,y)的平移和theta角度的旋转例T = se2(1,2,pi/2) % 弧度制 x方向平移1,y平移2,逆时针转60度T = se2(1,2,60,'deg') % 角度 trplot2(T) % 画出图形3维函数效果rot

2021-01-11 09:52:49 1090

原创 机器学习1.0

机器学习定义:如果某计算机程序在T任务中的性能(由P衡量)随着经验E的提高而提高,则可以说它是从经验E中学习有关某类任务T和性能度量P的。简单的来说:打个比方—>玩跳棋。E =玩许多跳棋游戏的经验T =扮演跳棋的任务。P =程序将赢得下一场比赛的概率。通常,可以将任何机器学习问题分配给以下两种广泛的分类之一:监督学习和无监督学习。监督学习在监督学习中,我们得到了一个数据集,并且已经知道我们正确的输出应该是什么样子,并且认为输入和输出之间存在关系。监督学习问题分为“回归”和“分类”

2020-10-20 02:56:31 306

原创 tf#单层感知器实现(1.np实现,2.tf实现)

1.基础概念1.建模之前,我们把数据集分成3部分训练集:用来训练构建模型测试集:等模型训练好之后,用来测试模型的好坏验证集:在模型训练阶段,测试模型好坏回归/分类/聚类总结回归:预测数据为连续类型分类:预测数据为类别型数据,并且类别已知聚类:预测数据为类别型数据,但类别未知2.模型收敛条件1.误差小于,某个预先设定的较小的值2.2次迭代之间的权值,很小3.设定最大迭...

2020-04-17 14:43:32 196

原创 tf#图像选择

图像处理1.图像数字化3要素:[长度,宽度,通道数]如何用张量表示[height,winth,hwo]2. 图像的基本操作: 所有图片统一 所有图片转换成指定大小 缩小图片数据量,防止开销tf.image.resize_images(images,size)import tensorflow as tfimport osdef picread(bag): """...

2020-04-09 17:21:39 147

原创 opencv#canny边缘检测

Canny边缘检测Canny 边缘检测是一种非常流行的边缘检测算法,是 John F.Canny 在1986 年提出的。它是一个有很多步构成的算法,我们接下来会逐步介绍。1.噪声去除由于边缘检测很容易受到噪声影响,所以第一步是使用 5x5 的高斯滤波器去除噪声,这个前面我们已经学过了。2.计算图像梯度对平滑后的图像使用 Sobel 算子计算水平方向和竖直方向的一阶导数(图像梯度)(Gx ...

2020-04-03 00:17:29 191

原创 OpenCv#图像梯度

图像梯度图像梯度:I是图像像素的值(如:RGB值)一阶导数:x的梯度:Gx = I(x+1,y)-I(x,y)y的梯度:Gy = I(x,y+1)-I(x,y)二阶导数:x的梯度:I(x+1,y)+I(x-1,y)-2I(x,y) y的梯度:I(x,y+1)+I(x,y-1)-2I(x,y) OpenCV 提供了三种不同的梯度滤波器,或者说高通滤波器: Sobel,Scharr 和 ...

2020-04-03 00:11:03 208

原创 opencv#二值化

二值化一.2值化几个方法原理介绍第一张图是基本的图形,虚线是设定的阈值• cv2.THRESH_BINARY # 大于阈值的值,变成最大,小于的则为0• cv2.THRESH_BINARY_INV # 与上面相反• cv2.THRESH_TRUNC # 大于阈值的值,变为阈值;反之不变• cv2.THRESH_TOZERO # 大于阈值的变为0;反之不变• cv2.THRESH_T...

2020-04-01 01:01:30 536

原创 opencv#基础2

一.形态学一个小概念,3种结构,取图像的结构咱们先看一个图所谓的kernel就是---->相当于下面的的窗口图像,去原图像里面的找最小值。 把下面那个kernel1窗口中最小的值,取出来放到上面,形成一个新的图片.我们就来定义下面的那个框------1.这个一个正方形的框kernel1 = cv2.getStructuringElement(cv2.MORPH_RECT...

2020-03-29 22:24:41 111

原创 opencv#基础1

画图 opencvimport numpy as npimport cv2import matplotlib.pyplot as plt# 显示图片的函数def show(image): plt.imshow(image) plt.axis('off') plt.show()1. 画线g = (0,255,0)cv2.line(image,(0,0),(...

2020-03-29 12:15:35 91

原创 tensorf#文件读取1.csv文件读取

tensorfrom—文件读取import tensorflow as tf# 模拟一下同步数据处理# 1.首先定义队列Q = tf.FIFOQueue(3, tf.float32)# 1.1 放入一些数据enq_many = Q.enqueue_many([[0.1, 0.2, 0.4],])# 2.定义一些数据读取,out_q = Q.dequeue() # 从Q中读取...

2020-03-26 23:43:58 296

原创 深度学习#tensorflow进阶

前提变量:变量变量的创建变量的初始化变量的作用域定义:变量也是一种op,能够被存储持久化,他的值就是张量,默认被训练变量op1.变量的初始化:变量的初始化必须在模型的其它操作运行之前先明确地完成。# 变量的创建tf.Variablevar = tf.Variable(tf.random_normal([2, 3], mean=0.0, stddev=1.0))# 必须...

2020-03-24 23:11:41 168

原创 深度学习#张量

tensorfrom基础介绍1.tensor–张量2.op(operation):专门运算的的操作节点,所有操作都是一个op3.图:graph:你的整个程序结构4.绘画:session()–运算程序的图,而使用的只要用tf定义的API的函数都是opSession()绘画1.tensor:前段,定义程序的图的机构后端:运算图结构绘画的作用运行图的结构分配计算资源掌握资...

2020-03-24 00:00:47 167

原创 机器学习# kmean--算法

kmean–算法,步骤介绍***此处有图1 ***随机在数据中抽取3个样本,当做3个类别的中心点(k1,k2,k3)计算其余的点到这3个中心点的距离,每一个样本有3个距离(a,b,c),从中选选出距离最近的一个点作为自己的标记形成的个族群分别计算和三个族群的平均值,把3个平均值与之前的三个旧中心点比较,如果相同:结束聚类,如果不同:把这3个点当成新的中心点,重复第2次api—fr...

2020-03-19 11:45:10 214

原创 机器回归#保存模型,加载模型,逻辑回归

保存模型,加载模型from sklearn.externals import joblib1.保存jobib.dump(rf,‘test.plk’) sgd = SGDRegressor() sgd.fit(x_train, y_train) print(sgd.coef_) # 保存训练好的模型 joblib.dump(sgd, './tmp/test...

2020-03-18 09:08:30 805

原创 机器学习#线性回归,岭回归

回归算法线性回归寻找一种能预测的趋势二维:直线关系三维:特征目标值,平面中线性关系模型一个通过***属性的线性组合 ***来进行预测的函数:f(x)=w1x1+w2x2+w3x3+w4x4…+wnxnw为权重,b为偏移量回归,神经网络,全部称为迭代算法预测的时候有差距,回归:知道自己有误差那门问题来了:我们如何去求解模型中的w使得误差值最小呢?目的:是找到最小损失对应...

2020-03-16 23:26:03 219

原创 机器学习#决策树

决策树信息熵单位比特:代表的含义:信息熵 越大,不确定信越大,信息熵越好越稳定信息增益:当知道一个特征条件后,减少信息熵的大小特征A对训练集D的信息增益g(D,A),定义集合D的信息熵H(D)与特征A给定的条件下D的信息条件熵H(D|A)g(D,A)=H(D)-H(D|A)注: H(D) 初始信息熵大小,每个概率相乘注:信息增益越大,所选特征最有特征例:图片决策树分类依据...

2020-03-15 01:13:23 276

原创 机器学习#分类模型评估

分类模型评估1.准确率:.score()2.混淆矩阵混淆矩阵1.召回率:真实为正例的样本中,预测结果为正例的比例(查的全不全,对正样本的区分能力)(tp)/(tp+fn)2.精确率:预测结果为正的样本中,真实为正例的比例(tp)/(tp+fp)正例负例正例真正例tp伪反例FN负例伪正例FP真反例TN预测结果例子:100个动物是猫还是狗其中20...

2020-03-14 03:31:07 181

原创 机器学习#朴素贝叶斯,fit_transform()解释

朴素贝叶斯from sklearn.datasets import fetch_20newsgroups#导入一个 sklearn 的数据包里面的20个数据集from sklearn.model_selection import train_test_split# 进行数据分割的包from sklearn.feature_extraction.text import TfidfVecto...

2020-03-13 23:21:46 694

原创 机器学习##分类算法1-knn

分类算法----目标值是离散型的###knn邻近算法—标准化处理knn定义:如果一个样本特征空间中的K个值最相似(即特征空间中最邻近)的样本中大多数,属于某一个类别,则该样本也属于这个类别需要:需要标准化,防止值差距太多api:knn 距离公式 根号(a1-b1)的平方+(a2-b2)的平方例子:目标值:入住位置的id特征值:x,y坐标,定位准确性,时间,日,时‘’‘pytho...

2020-03-13 08:21:21 200

原创 机器学习#数据划分与预处理

回顾减少特征的数量两种方法特征选择原因:部分特征相关度太高,部分特征对预测有影响就是:特征太多,选少点‘’‘pythonfrom sklearn.feature_selection import VarianceThresholddef vir():“”"过滤式:特征选择,删除低方差的特征“”"var=VarianceThreshold(threshold=1.0)da...

2020-03-11 23:27:09 348

原创 python#标准缩放

数值型数据:标准缩放from sklearn.feature_extraction import DictVectorizerfrom sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizerimport jiebafrom sklearn.preprocessing import MinMaxScale...

2020-03-10 21:04:40 194

原创 python#特征工程和文本特征提取

字典数据特征抽取DictVectorizer(语法)DictVectorizer.fit_transfromx()-->x:字典或者包涵字典的迭代器(放在列表里 )-->返回值:返回sparse矩阵from sklearn.feature_extraction import DictVectorizerdef dictvec(): """ 字典数据抽取...

2020-03-07 21:28:51 505

原创 机器学习简介

机器学习简介###无监督学习1.无监督学习试图学习或提取数据背后的数据特征,或者从数据中抽取出重要的特征信息,常见的算法有聚类,降维,文本处理等2.无监督学习一般作为有监督学习的前期数据处理,功能是从原始数据汇总抽取必要的标签信息。机器学习分类2分类通过分类模型,将样本数据集中的样本映射到某个给定的类别中聚类将样本数据集中的样本分为几个类别,属于同一类别的样本相似性比较大回归反...

2020-03-06 18:44:35 82

原创 python作图函数2

写标记–annotate函数import matplotlib.pyplot as pltimport numpy as npx = np.arange(-10,11,1)y = x*xplt.plot(x,y)plt.annotate('this is the bottom',xy=(0,1),xytext=(0,20), arrowprops=dic...

2020-03-05 09:13:37 88

原创 python#作图函数1

plt.plot([1,2,3],[3,2,1])----------x-->[1,2,3]y-->[3,2,1]x=np.loatxt('文件路径',delimter=',',skiprows=1')delimter=','-----文件的数据用','号分割的skiprows=1-----跳过第一行usecols=(3,4,5)---取文本的3,4列unpack=F...

2020-03-04 08:46:48 287

原创 python#pandans包

pandans1.一维数组s = pd.Series([1, 3, 5, 6, np.nan, 8])0 1.01 3.02 5.03 6.04 NaN5 8.0dtype: float641.pd.date_range函数原型:pd.date_range(start=None, end=None, periods=None)— st...

2020-03-01 00:05:42 183

原创 python#排序代码

一.冒泡排序def bubble_sort(alist): """冒泡排序""" n = len(alist) for j in range(n-1): count = 0 for i in range(0, n-1-j): # 班长从头走到尾 if alist[i]>alist[i+1...

2020-02-26 19:52:17 94

原创 栈与队列

一.算法什么是算法。独立存在的一种解决问题的方法和思想二.算法初接触枚举法# 如果 a+b+c=1000 ,且 a^2 + b ^2 = c^2 (a,b,c为自然数),如何求出所有组合for a in range(0, 1001): for b in range(0, 1001): for c in range(0 ,1001): ...

2020-02-24 22:34:28 45

原创 Pands库笔记

1.1 panda。Series数组创建import pandas as pddata = pd.Series([1.5, '3', 4.5, 6], index=['a', 'b', 'c', 'd'])print(data)---------------------------a 1.5b 3c 4.5d 6dtype: object1....

2020-02-24 22:33:13 298

原创 python#文件

目标文件的概念文件的基本操作文件/文件夹的常用操作文本文件的编码方式基本操作方法01 open 打开文件,并且返回文件操作对象02 read 将文件内容读取到内存03 write 将指定内容写入文件04 close 关闭文件# 打开文件file = open("未命名.txt")# 2.读取文件内容text = file.read()print(text)...

2020-02-19 04:33:50 109

原创 python#模块

前言1.模块模块的载入1.模快# 全局变量title = '模块1'# 函数def say_hello(): print("我是 %s" % title)# 类class Dog(object): pass2.导入模块import hm_01测试hm_01测试.say_hello()dog = hm_01测试.Dog当模块名称,太长的时候,可...

2020-02-18 23:12:04 145

原创 python#异常

前言异常try: #提示用户输入一个数 num = int(input("请输入数字"))except: print("请输入正确的数字")多错误类型,1.获取错误类型num = int(input("请输入一个整数"))# 使用8除以用户输入的整数并输出result = 8 / numprint(result)----------------...

2020-02-18 04:13:59 423

原创 python# 类属性和方法

前言类,相当于一个模板对象生成的实例,相当于出现个一个产品,有血有肉1.1 术语 —— 实例使用面相对象开发,第 1 步 是设计 类使用 类名() 创建对象,创建对象 的动作有两步:在内存中为对象 分配空间调用初始化方法 init 为 对象初始化对象创建后,内存 中就有了一个对象的 实实在在 的存在 —— 实例因此,通常也会把:1.创建出来的 对象 叫做 类 的 实例...

2020-02-17 05:14:12 111

原创 python#继承,多态

今天的目录1.继承1.继承需求原因:实现代码的重用,相同的代码不需要重复的编写概念:子类 拥有 父类 的所有 方法 和 属性class Animal: def eat(self): print("吃") def drink(self): print("喝") def run(self): print("跑")...

2020-02-17 03:39:04 115

原创 python#面向对象编程

写在前面在定义方法和属性的问题上1.以下面的为例子定义属性 self.name = name 这个self.后面的name 就是Person里面的一个属性方法 def 后面就是定义的方法名案例一.小明爱跑步小计划class Person: def __init__(self, name, weight): # self.属性 = 形参 se...

2020-02-16 03:13:39 95

原创 python#面向对象基础

01. 类和对象的概念类 和 对象 是 面向对象编程的 两个 核心概念1.1 类类, 是对一群具有 相同 特征 或者 行为 的事物的一个统称,是抽象的,不能直接使用特征 被称为 属性行为 被称为 方法类 就相当于制造飞机时的图纸,是一个 模板,是 负责创建对象的1.2 对象对象 是 由类创建出来的一个具体存在,可以直接使用在程序开发中,应先有类,再有对象2.1 面向对象基本...

2020-02-14 22:41:48 66

原创 python#面向对象1

01. 类和对象的概念类 和 对象 是 面向对象编程的 两个 核心概念1.1 类类, 是对一群具有 相同 特征 或者 行为 的事物的一个统称,是抽象的,不能直接使用特征 被称为 属性行为 被称为 方法类 就相当于制造飞机时的图纸,是一个 模板,是 负责创建对象的1.2 对象对象 是 由类创建出来的一个具体存在,可以直接使用在程序开发中,应先有类,再有对象2.1 面向对象基本...

2020-02-14 22:33:45 60

原创 python#函数的进阶

01. 函数参数和返回值的作用函数根据 有没有参数 以及 有没有返回值,可以 相互组合,一共有 4 种 组合形式无参数,无返回值无参数,有返回值有参数,无返回值有参数,有返回值定义函数时,是否接收参数,或者是否返回结果,是根据 实际的功能需求 来决定的!如果函数 内部处理的数据不确定,就可以将外界的数据以参数传递到函数内部如果希望一个函数 执行完成后,向外界汇报执行结果,...

2020-02-10 17:04:52 348

原创 python#基础,变量的进阶

01. 变量的引用变量 和 数据 都是保存在 内存 中的在 Python 中 函数 的 参数传递 以及 返回值 都是靠 引用 传递的1.1 引用的概念在 Python 中变量 和 数据 是分开存储的数据 保存在内存中的一个位置变量 中保存着数据在内存中的地址变量 中 记录数据的地址,就叫做 引用使用 id() 函数可以查看变量中保存数据所在的 内存地址注意:如果变...

2020-02-10 01:43:05 126

原创 python#名片管理系统

import card_tools# 无限循环,由用户看什么时候结束while True: card_tools.show_menu() action_str = input("请选择希望执行的操作:") print("您选择的操作是[%s]" % action_str) if action_str in ['1', '2', '3']: ...

2020-02-08 12:32:55 122

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除