1. 问题描述:
这里有一个非负整数数组 arr,你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时,你可以跳到 i + arr[i] 或者 i - arr[i]。请你判断自己是否能够跳到对应元素值为 0 的任意下标处。
注意,不管是什么情况下,你都无法跳到数组之外。
示例 1:
输入:arr = [4,2,3,0,3,1,2], start = 5
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 5 -> 下标 4 -> 下标 1 -> 下标 3
下标 5 -> 下标 6 -> 下标 4 -> 下标 1 -> 下标 3
示例 2:
输入:arr = [4,2,3,0,3,1,2], start = 0
输出:true
解释:
到达值为 0 的下标 3 有以下可能方案:
下标 0 -> 下标 4 -> 下标 1 -> 下标 3
示例 3:
输入:arr = [3,0,2,1,2], start = 2
输出:false
解释:无法到达值为 0 的下标 1 处。
提示:
1 <= arr.length <= 5 * 10 ^ 4
0 <= arr[i] < arr.length
0 <= start < arr.length
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jump-game-iii
2. 思路分析:
① 题目中有一个很明显的特点是对于当前的start起始位置需要通过尝试跳跃对应的步数才可以知道是否可以到达当前的位置,所以我们可以比较容易想到使用dfs来解决,因为dfs就是尝试所有的可能性,所以可以使用dfs来解决,在递归的方法中传入数组与对应的起点位置即可,我们队当前访问过的位置可以将数组中的对应元素置为-1即可
② 除了使用dfs搜索之外,我们可以发现题目中还有一个特点是从原位置到目标位置的求解,这个也是可以使用bfs解决的一个特点,所以我们可以使用bfs来求解,使用bfs求解需要借助于队列,在循环中我们可以尝试两种走的方法,也就是题目中给出的两种走法,并且我们尝试走的时候需要将当前走过的位置标记为已经访问过了,这里可以使用set来标记是否之前已经被访问过了
3. 代码如下:
dfs:
class Solution {
public boolean canReach(int[] arr, int start) {
return dfs(arr, start);
}
private boolean dfs(int[] arr, int start) {
if (start < 0 || start >= arr.length || arr[start] == -1)
return false;
int step = arr[start];
arr[start] = -1;
return step == 0 || dfs(arr, start + step) || dfs(arr, start - step);
}
}
bfs:
public static boolean canReach(int[] arr, int start) {
return bfs(arr, start);
}
private static boolean bfs(int[] arr, int start) {
if (start < 0 || start >= arr.length || arr[start] == -1)
return false;
Queue<Integer> queue = new LinkedList<>();
queue.add(start);
/*标记已经被访问过*/
Set<Integer> set = new HashSet<>();
set.add(start);
while (!queue.isEmpty()){
int poll = queue.poll();
if (arr[poll] == 0) return true;
if (poll + arr[poll] < arr.length && !set.contains(poll + arr[poll])){
queue.add(poll + arr[poll]);
set.add(poll + arr[poll]);
}
if (poll - arr[poll] >= 0 && !set.contains(poll - arr[poll])){
queue.add(poll - arr[poll]);
set.add(poll - arr[poll]);
}
}
return false;
}
}