1. 问题描述:
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉树中。
2. 思路分析:
① 对于二叉树的相关操作都是可以使用递归来解决的,分析题目可以是可以使用后序遍历的思路来处理对应的节点的的,因为如果p与q节点是分布在了根节点的左右子树那么说明当前的根节点是最近的公共祖先,基于这个想法我们是可以选择在递归完左右子树的时候进行判断,这个其实也是后序遍历的处理节点的步骤
② 因为是递归完左右子树再处理,需要判断当前的根节点是否可以成为最近公共祖先,判断的时候可以分为两种情况:
(1) p与q节点分布在了当前根节点的左右子树
(2) 当前的根节点的值等于了p节点或者是q节点的值并且在根节点的左右子树中找到了另外的一个节点
我们可以写一个有返回值的递归,递归往当前的节点之后那么返回的应该是根节点的左子树或者是右子树或者是当前的根节点的值等于了左子树或者是右子树的值,表示找到了当前根节点的左子树或者右子树中的或者是当前根节点就等于p或者是q节点的值
③ 对于二叉树的处理我们可以根据题目的要求来决定处理节点的顺序,比如递归节点的前面、中间还是后面进行处理
3. 代码如下:
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
res = None
def dfs(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
# 可以使用后序遍历来进行解决
if root is None: return False
lson = self.dfs(root.left, p, q)
rson = self.dfs(root.right, p, q)
if (lson and rson) or ((p.val == root.val or q.val == root.val) and (lson or rson)):
self.res = root
return lson or rson or p.val == root.val or q.val == root.val
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
self.dfs(root, p, q)
return self.res