题目地址:https://leetcode-cn.com/problems/lowest-common-ancestor-of-a-binary-tree/
题目
分析:
祖先的定义: 若节点 p 在节点 root 的左(右)子树中,或 p = roott ,则称 root是 p的祖先。
最近公共祖先的定义: 设节点 root 为节点 p, q 的某公共祖先,若其左子节点 root.left 和右子节点 root.right都不是 p,q的公共祖先,则称 root 是 “最近的公共祖先” 。
根据以上定义,若 root是 p, q 的 最近公共祖先 ,则只可能为以下情况之 一:
- p 和 q 在 root 的子树中,且分列 root 的 异侧(即分别在左、右子树中);
- p = root ,且 q 在 root的左或右子树中;
- q = root ,且 p 在 root的左或右子树中;
考虑通过递归对二叉树进行后序遍历,当遇到节点p
或q
时返回。从底至顶回溯,当节点p
,q
在节点root
的异侧时,节点root
即为最近公共祖先,则向上返回root
。
递归解析
1.终止条件:
当越过叶节点,则直接返回 null ;
当 root等于 p, q,则直接返回 root ;
2.递推工作:
开启递归左子节点,返回值记为 left ;
开启递归右子节点,返回值记为 right ;
3.返回值: 根据 left 和 right,可展开为四种情况;
当 left 和 right 同时为空 :说明 root的左 / 右子树中都不包含 p,q ,返回 null;
当 left和 right 同时不为空 :说明 p, q分列在 root的 异侧 (分别在 左 / 右子树),因此 root为最近公共祖先,返回 root ;
当 left为空 ,right 不为空 :p,q 都不在 root 的左子树中,直接返回 right。具体可分为两种情况:
p,q 其中一个在 root的 右子树 中,此时 right 指向 pp(假设为 pp ); p,q两节点都在 root的 右子树 中,此时的 right 指向 最近公共祖先节点 ;
4.当 left 不为空 , right为空 :与情况 3. 同理;
观察发现, 情况 1. 可合并至 3. 和 4. 内,详见文章末尾代码。
代码:
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null || root == p || root == q) return root;
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if(left == null) return right;
if(right == null) return left;
return root;
}
}
情况 1. , 2. , 3. , 4. 的展开写法如下。
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null || root == p || root == q) return root;
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if(left == null && right == null) return null; // 1.
if(left == null) return right; // 3.
if(right == null) return left; // 4.
return root; // 2. if(left != null and right != null)
}
}