1. 问题描述:
有一堆石头,每块石头的重量都是正整数。每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y - x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
示例:
输入:[2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
提示:
1 <= stones.length <= 30
1 <= stones[i] <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/last-stone-weight-ii
2. 思路分析:
分析题目可以知道我们可以将两堆石子分为正数和负数的石子,我们是希望这两堆石子在拿出来之后剩余的差值是最小的,所以我们尽可能需要使得两堆石头的差值是最小的,两堆石头的重量越接近差值肯定是最小的,所以我们可以将全部石头分成两堆石头并且使得两堆石头的重量尽可能接近sum // 2(这样最后的剩余石头的重量才是最小的),经过若干次的粉碎剩下来的就是这两堆石头的差值,这个时候原问题就可以转化为零一背包的问题,当前背包的容量为sum // 2,价值为石头的重量,我们需要求解的是在背包容量为sum // 2前提下装满背包的最大价值(这一点是核心,想到零一背包模型剩下来的就比较好办了);使用传统的零一背包模型就可以解决,尝试将当前的石头放入到容量从j = sum // 2的背包到j - stones[i]的背包中(使用两层循环第一层循环枚举所有的石头,第二层循环枚举当前背包的体积);零一背包问题的一维状态转移方程为:dp[j] = max(dp[j],dp[j - v] + w),v = stones[i],w = stones[i],因为这里使用的是一维数组所以在第二层枚举体积的时候需要逆序遍历(二维数组可以按顺序遍历),这样可以保证dp[j]和dp[j - v]都是上一层循环对应的状态。
3. 代码如下:
from typing import List
class Solution:
def lastStoneWeightII(self, stones: List[int]) -> int:
s = sum(stones)
dp = [0] * (s // 2 + 1)
for i in range(len(stones)):
for j in range(s // 2, stones[i] - 1, -1):
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
# 返回两堆石子的差值: s - dp[j] - dp[j], python列表中索引为-1表示的是最后一个元素
return s - 2 * dp[-1]