1. 问题描述:
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1]
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7
示例 2:
输入: [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber-iii
2. 思路分析:
这道题目属于树形dp的经典入门题目,我们需要在树上进行动态规划,对于树形dp的题目我们只需要考虑树中父节点与孩子节点之间的关系,也即考虑局部的关系然后使用dfs搜索即可,我们可以根据只有三个节点的二叉树进行分析,对于当前的根节点可以选择偷也可以选择不偷,根据偷与不偷的选择(动态规划)那么就可以确定父子节点之间的关系,0表示不偷,1表示偷,我们可以写一个有返回值的dfs方法,方法的返回值为列表类型,分别表示不偷与偷当前节点能够获得的最高金额。
3. 代码如下:
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
# 返回的结果第一个值表示不偷, 第二个值表示偷
def dfs(self, root: TreeNode):
if not root: return [0, 0]
x, y = self.dfs(root.left), self.dfs(root.right)
return [max(x[0], x[1]) + max(y[0], y[1]), x[0] + y[0] + root.val]
def rob(self, root: TreeNode) -> int:
res = self.dfs(root)
# 最终返回根节点偷与不偷的最大值
return max(res[0], res[1])