1. 问题描述:
给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0。
为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -2 ^ 28 到 2 ^ 28 - 1 之间,最终结果不会超过 2 ^ 31 - 1 。
例如:
输入:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
输出:
2
解释:
两个元组如下:
1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/4sum-ii
2. 思路分析:
分析题目可以知道最容易想到的是暴力枚举,使用四层循环分别枚举四个数组,时间复杂度为O(n ^ 4),当 n = 500的时候肯定会超时,所以我们需要对暴力枚举优化一下。因为需要从四个数组中各取出一个数字,所以我们可以枚举A, B数组中的两个数字,对于C,D数组的两个数字我们可以先将他们的和存储到哈希表(空间换时间)中,计算任意C,D数组中两个数字c, d组合方式对应的和,这样在我们就可以使用使用两层循环枚举数组A,B中各取出一个数字分别为a + b,然后我们只需要在哈希表中查询- (a + b)出现的次数即可,计算的就是a + b + c + d = 0的组合数目。
3. 代码如下:
from typing import List
import collections
class Solution:
# 空间换时间的思想, 将C和D的组合的和存储到哈希表中
def fourSumCount(self, A: List[int], B: List[int], C: List[int], D: List[int]) -> int:
dic = collections.defaultdict(int)
for c in C:
for d in D:
# c + d的组合数目
dic[c + d] += 1
res = 0
for a in A:
for b in B:
res += dic[-(a + b)]
return res