1. 问题描述:
给定一个表示分数的非负整数数组。 玩家 1 从数组任意一端拿取一个分数,随后玩家 2 继续从剩余数组任意一端拿取分数,然后玩家 1 拿,…… 。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。最终获得分数总和最多的玩家获胜。给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数最大化。
示例 1:
输入:[1, 5, 2]
输出:False
解释:一开始,玩家1可以从1和2中进行选择。
如果他选择 2(或者 1 ),那么玩家 2 可以从 1(或者 2 )和 5 中进行选择。如果玩家 2 选择了 5 ,那么玩家 1 则只剩下 1(或者 2 )可选。
所以,玩家 1 的最终分数为 1 + 2 = 3,而玩家 2 为 5 。
因此,玩家 1 永远不会成为赢家,返回 False 。
示例 2:
输入:[1, 5, 233, 7]
输出:True
解释:玩家 1 一开始选择 1 。然后玩家 2 必须从 5 和 7 中进行选择。无论玩家 2 选择了哪个,玩家 1 都可以选择 233 。
最终,玩家 1(234 分)比玩家 2(12 分)获得更多的分数,所以返回 True,表示玩家 1 可以成为赢家。
提示:
1 <= 给定的数组长度 <= 20
数组里所有分数都为非负数且不会大于 10000000 。
如果最终两个玩家的分数相等,那么玩家 1 仍为赢家。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/predict-the-winner
2. 思路分析:
分析题目可以知道这是一道博弈的问题,对于博弈论的问题一般可以使用记忆化搜索与动态规划来解决。由题可知每一次选择一个数字的时候剩下的区间都是连续的所以我们可以考虑区间dp的思路解决,区间dp一般需要定义二维数组或者列表来表示区间[i,j],我们可以定义dp[i][j]为当前区间[i,j]的时候当前玩家减去对方玩家获得最大得分的最大值,那么对于区间[i,j]就存在两个状态转移,分别是拿第i个数和拿第j个数对应的最大得分,那么拿第i个数和拿第j个数的时候dp[i][j] = max(nums[i] - dp[i + 1][j], nums[j] - dp[i - 1][j]),也即为两种状态的最大值(减去对方最大得分的最大值),理清楚状态转移剩下的就是区间dp的常规步骤了,第一层循环枚举长度,长度从 l = 1,2,...len(nums),第二层循环枚举当前起点为i,终点为j,长度为l的所有区间,这里存在一个边界是当长度为1的时候dp[i][j]为当前nums[i]的值,在循环中进行状态转移即可,最后dp[0][n - 1]就是区间[0, n - 1]当前玩家减去对方玩家最大得分的最大值,判断这个值是否大于等于0即可。
3. 代码如下:
from typing import List
class Solution:
# 经典的区间dp问题
def PredictTheWinner(self, nums: List[int]) -> bool:
n = len(nums)
dp = [[0] * n for i in range(n)]
# 枚举长度为l
for l in range(1, n + 1):
# i表示区间起点
i = 0
# j表示区间终点, 枚举长度为l的所有区间[i, j]
while i + l - 1 < n:
j = i + l - 1
# 边界
if l == 1:
dp[i][j] = nums[i]
else:
dp[i][j] = max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1])
i += 1
return dp[0][n - 1] >= 0