1. 问题描述:
给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。两个相邻元素间的距离为 1 。
示例 1:
输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]
示例 2:
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]
提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 10 ^ 4
1 <= m * n <= 10 ^ 4
mat[i][j] is either 0 or 1.
mat 中至少有一个 0
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/01-matrix
2. 思路分析:
这是一道经典的多源bfs问题(可以看成是已知多个起点求解到达终点的最短路径问题)。我们要求解的是从多个起点到某个位置的最短路径,这里求解的是多个0到当前的1的最短距离。多源bfs其实与单源bfs是类似的,多源bfs的经典做法是在一开始的时候需要将多个起点加入到队列中,然后接下来就是依次更新之前还没有被更新的位置即可,过程与单源bfs很类似。
3. 代码如下:
import collections
from typing import List
class Solution:
def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
# 特判一下边界情况
r, c = len(matrix), len(matrix[0])
if r == 0 or c == 0: return matrix
dist = [[-1] * c for i in range(r)]
q = collections.deque()
# 一开始的时候将多个起点加入到双端队列中
for i in range(r):
for j in range(c):
if matrix[i][j] == 0:
dist[i][j] = 0
q.append((i, j))
pos = [[0, 1], [0, -1], [1, 0], [-1, 0]]
while q:
t = q.popleft()
for i in range(4):
x = pos[i][0] + t[0]
y = pos[i][1] + t[1]
# 当前的位置没有越界并且之前没有被搜索过这个时候到达当前的位置上的距离肯定是最短的
if 0 <= x < r and 0 <= y < c and dist[x][y] == -1:
dist[x][y] = dist[t[0]][t[1]] + 1
q.append((x, y))
return dist