542 01 矩阵(多源bfs)

这篇博客介绍了如何解决一个计算机科学中的经典问题——01矩阵。给定一个由0和1组成的矩阵,任务是计算每个1到最近的0的距离。通过多源广度优先搜索(BFS)算法,从所有初始的0位置开始,逐步更新每个位置到0的最短距离。代码示例展示了如何实现这一算法,以Python语言完成,最终返回一个大小相同但填充了对应距离的新矩阵。
摘要由CSDN通过智能技术生成

1. 问题描述:

给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。两个相邻元素间的距离为 1 。

示例 1:

输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]

示例 2:
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]

提示:
m == mat.length
n == mat[i].length
1 <= m, n <= 10 ^ 4
1 <= m * n <= 10 ^ 4
mat[i][j] is either 0 or 1.
mat 中至少有一个 0 
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/01-matrix

2. 思路分析:

这是一道经典的多源bfs问题(可以看成是已知多个起点求解到达终点的最短路径问题)。我们要求解的是从多个起点到某个位置的最短路径,这里求解的是多个0到当前的1的最短距离。多源bfs其实与单源bfs是类似的,多源bfs的经典做法是在一开始的时候需要将多个起点加入到队列中,然后接下来就是依次更新之前还没有被更新的位置即可,过程与单源bfs很类似。

3. 代码如下:

import collections
from typing import List


class Solution:
    def updateMatrix(self, matrix: List[List[int]]) -> List[List[int]]:
        # 特判一下边界情况
        r, c = len(matrix), len(matrix[0])
        if r == 0 or c == 0: return matrix
        dist = [[-1] * c for i in range(r)]
        q = collections.deque()
        # 一开始的时候将多个起点加入到双端队列中
        for i in range(r):
            for j in range(c):
                if matrix[i][j] == 0:
                    dist[i][j] = 0
                    q.append((i, j))
        pos = [[0, 1], [0, -1], [1, 0], [-1, 0]]
        while q:
            t = q.popleft()
            for i in range(4):
                x = pos[i][0] + t[0]
                y = pos[i][1] + t[1]
                # 当前的位置没有越界并且之前没有被搜索过这个时候到达当前的位置上的距离肯定是最短的
                if 0 <= x < r and 0 <= y < c and dist[x][y] == -1:
                    dist[x][y] = dist[t[0]][t[1]] + 1
                    q.append((x, y))
        return dist
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值