每日一题 矩阵距离(多源bfs问题)

这是一篇关于如何计算N行M列01矩阵中各元素间曼哈顿距离的博客。文章通过多源广度优先搜索(BFS)算法解决这一问题,给出了输入输出格式,并提供了Python实现的示例。
摘要由CSDN通过智能技术生成

矩阵距离

给定一个NM列的01矩阵AA[i][j]A[k][l] 之间的曼哈顿距离定义为:

                 dist(A[i][j],A[k][l])=|i−k|+|j−l|

输出一个N行M列的整数矩阵B,其中:

        B[i][j]=min1≤x≤N,1≤y≤M,A[x][y]=1dist(A[i][j],A[x][y])

输入格式
第一行两个整数n,m

接下来一个NM列的01矩阵,数字之间没有空格。

输出格式
一个N行M列的矩阵B,相邻两个整数之间用一个空格隔开。

数据范围
1≤N,M≤1000

输入样例:

3 4
0001
0011
0110

输出样例:

3 2 1 0
2 1 0 0
1 0 0 1

视频讲解

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII;
const int N = 1010;

char a[N][N];
int st[N][N];

int n, m;
void bfs()
{
   
    memset(st, -1, sizeof(st));
    queue<PII> q;
    for(int i=0;i<n;i++)  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值