矩阵距离
给定一个N行M列的01矩阵A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为:
dist(A[i][j],A[k][l])=|i−k|+|j−l|
输出一个N行M列的整数矩阵B,其中:
B[i][j]=min1≤x≤N,1≤y≤M,A[x][y]=1dist(A[i][j],A[x][y])
输入格式
第一行两个整数n,m。
接下来一个N行M列的01矩阵,数字之间没有空格。
输出格式
一个N行M列的矩阵B,相邻两个整数之间用一个空格隔开。
数据范围
1≤N,M≤1000
输入样例:
3 4
0001
0011
0110
输出样例:
3 2 1 0
2 1 0 0
1 0 0 1
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 1010;
char a[N][N];
int st[N][N];
int n, m;
void bfs()
{
memset(st, -1, sizeof(st));
queue<PII> q;
for(int i=0;i<n;i++)

这是一篇关于如何计算N行M列01矩阵中各元素间曼哈顿距离的博客。文章通过多源广度优先搜索(BFS)算法解决这一问题,给出了输入输出格式,并提供了Python实现的示例。
最低0.47元/天 解锁文章
1169

被折叠的 条评论
为什么被折叠?



