1. 问题描述:
给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:"abc"
输出:3
解释:三个回文子串: "a", "b", "c"
示例 2:
输入:"aaa"
输出:6
解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"
提示:
输入的字符串长度不会超过 1000 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/palindromic-substrings
2. 思路分析:
分析题目可以知道字符串的最大长度为1000,所以我们可以考虑是否可以使用枚举的方法将所有答案枚举出来,也即我们需要确定一个枚举的顺序使得可以将所有答案枚举出来,可以发现当我们枚举以当前位置i为回文串的中心点往外扩展回文串的长度可以将所有答案枚举出来,这里可以分长度为奇数与长度为偶数的情况进行枚举,长度为奇数的时候以当前的位置作为分隔点左右两边都是回文串,长度为偶数的时候我们可以枚举当前位置和下一个位置回文串的情况,在枚举的时候也是往外扩展的,当我们发现左右两端的字符不匹配的时候那么不用往下匹配了因为长度更大的也不可能是回文串了。
3. 代码如下:
class Solution:
# 枚举以当前的位置为中心点的回文串的数目
def countSubstrings(self, s: str) -> int:
res = 0
for i in range(len(s)):
j, k = i, i
# 枚举长度为奇数的情况
while j >= 0 and k < len(s):
# 当前不匹配的时候说明长度更大的也不可能是回文串(以当前的中心扩展的回文串)
if s[j] != s[k]: break
else:
res += 1
j -= 1
k += 1
# 枚举长度为偶数的情况
j, k = i, i + 1
while j >= 0 and k < len(s):
if s[j] != s[k]:break
else:
res += 1
j -= 1
k += 1
return res