3662 最大上升子序列和(dp + 树状数组优化)

1. 问题描述:

给定一个长度为 n 的整数序列 a1,a2,…,an。请你选出一个该序列的严格上升子序列,要求所选子序列的各元素之和尽可能大。请问这个最大值是多少?

输入格式

第一行包含整数 n。第二行包含 n 个整数 a1,a2,…,an。

输出格式

输出最大的上升子序列和。

数据范围

对于前三个测试点,1 ≤ n ≤ 4。
对于全部测试点,1 ≤ n ≤ 10 ^ 5,1 ≤ ai  ≤ 10 ^ 9。

输入样例1:

2
100 40

输出样例1:

100

输入样例2:

4
1 9 7 10

输出样例2:

20
样例解释
对于样例 1,我们只选取 100。对于样例 2,我们选取 1,9,10。
来源:https://www.acwing.com/problem/content/description/3665/

2. 思路分析:

这道题目与1016题的题目是一样的,只是数据范围上有所不同,1016题的数据范围为10 ^ 3,这道题目的数据范围为10 ^ 5,所以不能够直接使用1016题中的做法,我们需要将时间复杂度控制到O(n)或者是O(nlogn)以内,所以需要对1016题中的做法进行优化,一般来说对于一道dp的题目先考虑如何正确做出来,然后再考虑如何优化,很多时候是可以分开考虑的;首先考虑如何做,对于这道题目来说我们可以声明一个一维数组f,其中f[i]表示以ai结尾的严格上升子序列的最大和,因为当前的上升子序列中ai是确定的,所以我们可以看严格上升子序列倒数第二个元素的位置,其中0 <= j < i,根据倒数第二个元素可以将其分为i类(∀aj < ai),如果ai可以接在aj的后面那么更新一下最大值,在当前i类中取一个max就是以当前ai结尾的严格上升子序列的最大和,状态计算表达式为:f[i] = max(f[i],f[j] + a[i])(0 <= j < i),根据这个表达式可以发现每一次我们都是在前[0,i - 1]个数中找到一个小于ai的对应的最大的f[j],在区间[0,i - 1]中找到一个小于ai的最大的f[j]的操作(维护区间最大值)可以使用树状数组,线段树或者splay来解决(spaly比较长不推荐),实际上是维护当前区间的最大值;如果使用树状数组来解决,由于ai最大是10 ^ 9,而且n最多有10 ^ 5所以不可能声明这么大的数组,我们需要对ai进行离散化,离散化之后的数组长度最大为10 ^ 5,离散化其实是将所有的数值映射为连续的下标,我们对当前的数值操作等价于对对应下标的位置进行操作,可以枚举所有的ai,找到ai在离散化数数组xs的对应位置k,然后使用树状数组的query查询操作查询出区间[1,k - 1]中的最大值(注意树状数组的下标是从1开始的,所以一开始的时候需要在离散化数组前面加上一个0这样元素下标可以从1开始避免后面树状数组插入元素的时候出现死循环),相当于前i - 1个数中最大的f[j],当前的f[i] = f[j] + a[i],更新一下最大值res,然后将f[i] "插入" 到对应位置,对于这道题目来说其实是更新与i相关位置的树状数组对应位置的最大值(根据题目的要求维护相应位置的值)。

3. 代码如下:

from typing import List


class Solution:
    # tr为树状数组
    tr = None

    def lowbit(self, x: int):
        return x & -x
    
    # 在x位置"加上"v, 根据题目的要求确定维护的是最大/小值或者和进行对应操作, 对于这道题目来说是维护最大值
    def add(self, x: int, v: int, n: int):
        i = x
        while i < n:
            self.tr[i] = max(self.tr[i], v)
            i += self.lowbit(i)

    def query(self, x: int):
        i, res = x, 0
        while i > 0:
            res = max(res, self.tr[i])
            i -= self.lowbit(i)
        return res

    # 二分查找xs中第一个小于等于x的位置, 可以发现一定会找到这个位置
    def get(self, x: int, xs: List[int]):
        # 注意下标是从1开始的
        l, r = 1, len(xs) - 1
        while l < r:
            mid = l + r >> 1
            if xs[mid] >= x:
                r = mid
            else:
                l = mid + 1
        return r

    def process(self):
        n = int(input())
        a = list(map(int, input().split()))
        # f为状态数组, f[i]表示以ai结尾的严格上升子序列的最大和
        f = [0] * (n + 10)
        # xs为离散化之后的数组, 前面加上一个0这样二分查找的时候下标可以从1开始
        xs = [0] + list(set(a))
        xs.sort()
        # 因为最多有xs个元素所以长度声明大一点即可
        self.tr = [0] * (len(xs) + 10)
        res = 0
        for i in range(n):
            k = self.get(a[i], xs)
            f[i] = self.query(k - 1) + a[i]
            res = max(res, f[i])
            # 将f[i]的值插入到对应位置, (其实是更新与位置k有关系的位置的最大值)
            self.add(k, f[i], len(xs) + 10)
        return res


if __name__ == '__main__':
    print(Solution().process())
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
树状数组可以用来解决最长公共序列问题。下面是使用树状数组优化的最长公共序列求解算法。 首先,我们需要将两个序列分别离散化,将每个数映射到一个连续的整数区间内,然后将它们分别存储在两个数组中。 接着,我们定义一个二维数组`dp`,其中`dp[i][j]`表示序列1中前i个数和序列2中前j个数的最长公共序列长度。则有以下状态转移方程: ```c if (a[i] == b[j]) dp[i][j] = dp[i-1][j-1] + 1; else dp[i][j] = max(dp[i-1][j], dp[i][j-1]); ``` 其中,`a`和`b`分别是两个离散化后的序列。 时间复杂度为O(n^2)。 然后,我们可以使用树状数组优化这个算法,将时间复杂度降至O(nlogn)。 我们需要定义一个树状数组`c`,其中`c[i]`表示序列1中前i个数中最后一个数在序列2中出现的位置。然后,我们可以用二分查找来找到序列1中第i个数在序列2中出现的最晚位置,即`c[i]`。 接着,我们可以通过遍历序列1中的每个数,用树状数组更新`c`数组,并根据`c`数组和状态转移方程来更新`dp`数组。 具体来说,对于序列1中的第i个数,我们可以用二分查找在序列2中找到它出现的最晚位置`pos`,然后用树状数组将`pos`更新为i。接着,我们可以遍历序列2中的每个数,如果它在序列1中出现过,则可以根据状态转移方程来更新`dp`数组。 时间复杂度为O(nlogn)。 以下是使用树状数组优化的最长公共序列求解算法的完整代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_N 100000 int a[MAX_N + 10], b[MAX_N + 10]; int c[MAX_N + 10]; int dp[MAX_N + 10][2]; int n, m; int lowbit(int x) { return x & (-x); } void update(int x, int val) { while (x <= n) { c[x] = max(c[x], val); x += lowbit(x); } } int query(int x) { int res = 0; while (x) { res = max(res, c[x]); x -= lowbit(x); } return res; } int main() { scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 1; i <= m; i++) { scanf("%d", &b[i]); } // 离散化 int k = 1; for (int i = 1; i <= n; i++) { for (int j = k; j <= m; j++) { if (a[i] == b[j]) { a[i] = j; k = j + 1; break; } } } // 初始化 memset(c, 0, sizeof(c)); memset(dp, 0, sizeof(dp)); // 动态规划求解 for (int i = 1; i <= n; i++) { int pos = query(a[i]); dp[i][0] = dp[i-1][1]; dp[i][1] = dp[i-1][1]; if (pos > 0) { dp[i][1] = max(dp[i][1], dp[pos-1][0] + i - pos + 1); } update(a[i], i); } printf("%d\n", dp[n][1]); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值