1. 问题描述:
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
问题网址:https://vjudge.net/problem/OpenJ_Bailian-1061
2. 思路分析:因为两只青蛙有可能在绕弯大于一圈的维度才相遇到,这个问题实际上就是取余的问题
x + k * m = L * t1+ 余数
y + k * n = L * t2 + 余数
方程两边相减:(m - n)*k + Lt = y - x;
本质其实就是解决线性方程:a x + b y = m的一个解的问题,因为其中涉及到求解的次数应该是大于零的,那么求解的应该是第一个大于零的解
需要进行以下的处理:b /= d(d为a,b的最大公约数) x0 = (x%b + b)%b
3. 代码如下:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int x = sc.nextInt();//坐标
int y = sc.nextInt();//坐标
int m = sc.nextInt();//A一次跳
int n = sc.nextInt();//B一次跳
int L = sc.nextInt();//纬度总长
int a = m - n;
int b = L;
m = y - x;
long d;
try {
d = Ext_gcd.linearEquation(a, b, m);
//System.out.println(d);
long x0 = Ext_gcd.x;
b /= d;
b = Math.abs(b);
//求出第一个大于零的数
x0 = (x0 % b + b) % b;
System.out.println(x0);
} catch (Exception e) {
System.out.println("Impossible");
e.printStackTrace();
}
}
private static class Ext_gcd{
public static long x,y;
public static long gcd(int a,int b){
if(b==0){
x = 1;
y = 0;
return a;
}
long res = gcd(b,a%b);
long x1 = x;
x = y;
y = x1 - a / b * y;
return res;
}
public static long linearEquation(int a,int b,int m) throws Exception{
long d = gcd(a,b);
if(m%d!=0){
throw new Exception("无解");
}else{
long n = m / d;
x *= n;
y *= n;
}
return d;
}
}
}