青蛙的约会-求解模线性同余方程

1. 问题描述:

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

问题网址:https://vjudge.net/problem/OpenJ_Bailian-1061

 

2. 思路分析:因为两只青蛙有可能在绕弯大于一圈的维度才相遇到,这个问题实际上就是取余的问题

x + k * m  =  L * t1+ 余数

y + k * n =   L * t2 + 余数

方程两边相减:(m - n)*k + Lt = y - x;

本质其实就是解决线性方程:a x  + b y = m的一个解的问题,因为其中涉及到求解的次数应该是大于零的,那么求解的应该是第一个大于零的解

需要进行以下的处理:b /= d(d为a,b的最大公约数) x0 = (x%b + b)%b

 

3. 代码如下:

import java.util.Scanner;
public class Main {
	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int x = sc.nextInt();//坐标
		int y = sc.nextInt();//坐标
		int m = sc.nextInt();//A一次跳
		int n = sc.nextInt();//B一次跳
		int L = sc.nextInt();//纬度总长
		int a = m - n;
		int b = L;
		m = y - x;
		long d;
		try {
			d = Ext_gcd.linearEquation(a, b, m);
			//System.out.println(d);
			long x0 = Ext_gcd.x;
			b /= d;
			b = Math.abs(b);
			//求出第一个大于零的数
			x0 = (x0 % b + b) % b;
			System.out.println(x0);
		} catch (Exception e) {
			System.out.println("Impossible");
			e.printStackTrace();
		}	
	}
	
	private static class Ext_gcd{
		public static long x,y;
		public static long gcd(int a,int b){
			if(b==0){
				x = 1;
				y = 0;
				return a;
			}
			long res = gcd(b,a%b);
			long x1 = x;
			x = y;
			y = x1 - a / b * y;
			return res;
		}
		
		public static long linearEquation(int a,int b,int m) throws Exception{
			long d = gcd(a,b);
			if(m%d!=0){
				throw new Exception("无解");
			}else{
				long n = m / d;
				x *= n;
				y *= n;
			}
			return d;
		}
	}	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值