青蛙约会问题:两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
问题分析: 这个问题可以简化为两个量:两只青蛙位置的差值S(这里青蛙位置为初始位置x(或y)加上跳动距离m(或n))和纬度线L的总长。可以看出,当青蛙位置的差值S为纬度线长度L的整数倍时,两只青蛙在同一点上。例如当青蛙A位置在3.5圈而B在4.5圈时,两只青蛙在同一点上。所以我们只需要知道青蛙位置的差值S再和纬度线长度L进行比较就可以知道青蛙是否在同一点上。但是如果青蛙一直不相遇我们不可能一直求下去。所以下一个难点是证明青蛙能否相遇。
这个问题的两个量,青蛙位置的差值S,是一个有一个初始值x-y(两蛙初始位置差值)且每次变动一个固定值m-n(两蛙每次跳动距离的差值)的量。它和纬度线长度的关系可以类比为秒针的位置和表盘一圈周长的关系。位置差值的初始值x-y可以看成是秒针的初始位置,位置差